Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

被引:23
作者
Miyamoto, K. [1 ]
Okuda, S. [2 ]
Nishioka, S. [2 ]
Hatayama, A. [2 ]
机构
[1] Naruto Univ Educ, Naruto, Tokushima 7728502, Japan
[2] Keio Univ, Fac Sci & Technol, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
基金
日本学术振兴会;
关键词
OPERATION;
D O I
10.1063/1.4820571
中图分类号
O59 [应用物理学];
学科分类号
摘要
Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H- extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 24 条
  • [1] Birdsall C K., 2018, Plasma Physics via Computer Simulation
  • [2] Production of negative ions on graphite surface in H2/D2 plasmas: Experiments and SRIM calculations
    Cartry, G.
    Schiesko, L.
    Hopf, C.
    Ahmad, A.
    Carrere, M.
    Layet, J. M.
    Kumar, P.
    Engeln, R.
    [J]. PHYSICS OF PLASMAS, 2012, 19 (06)
  • [3] Negative ion beam halo mitigation at the 1 MV testbed at IRFM
    de Esch, H. P. L.
    Svensson, L.
    [J]. FUSION ENGINEERING AND DESIGN, 2011, 86 (4-5) : 363 - 368
  • [4] Fantz U, 2006, REV SCI INSTRUM, V77
  • [5] Grid power loading in a multiaperture, multigrid negative ion accelerator
    Hanada, M
    Fujiwara, Y
    Miyamoto, K
    Miyamoto, N
    Okumura, Y
    Watanabe, K
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (02) : 947 - 949
  • [6] Hemsworth R., 2009, NUCL FUSION, V49
  • [7] Neutral beams for ITER
    Hemsworth, RS
    Feist, JH
    Hanada, M
    Heinemann, B
    Inoue, T
    Kussel, E
    Krylov, A
    Lotte, P
    Miyamoto, K
    Miyamoto, N
    Murdoch, D
    Nagase, A
    Ohara, Y
    Okumura, Y
    Pamela, J
    Panasenkov, A
    Shibata, K
    Tanii, M
    Watson, M
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (03) : 1120 - 1125
  • [8] DESIGN AND OPERATION OF A 30-KV ACCELERATOR FOR NEGATIVE-ION BEAMS
    HOLMES, AJT
    NIGHTINGALE, MPS
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1986, 57 (10) : 2402 - 2408
  • [9] Kamada M, 2009, AIP CONF PROC, V1097, P412, DOI 10.1063/1.3112540
  • [10] Analysis of the H- ion emissive surface in the extraction region of negative ion sources
    Kameyama, N.
    Fukuyama, T.
    Wada, S.
    Kuppel, S.
    Tsumori, K.
    Nakano, H.
    Hatayama, A.
    Miyamoto, K.
    Fukano, A.
    Bacal, M.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (02)