On q-Congruences Involving Harmonic Numbers

被引:3
作者
He, B. [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling, Shaanxi, Peoples R China
关键词
Q-ANALOGS; CATALAN NUMBERS; SUPERCONGRUENCES;
D O I
10.1007/s11253-018-1445-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give some congruences involving q-harmonic numbers and alternating q-harmonic numbers of order m. Some of these congruences are q-analogs of several known congruences.
引用
收藏
页码:1463 / 1472
页数:10
相关论文
共 50 条
[31]   Congruences for finite triple harmonic sums [J].
Fu Xu-dan ;
Zhou Xia ;
Cai Tian-xin .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (06) :946-948
[32]   Congruences for finite triple harmonic sums [J].
Xu-dan Fu ;
Xia Zhou ;
Tian-xin Cai .
Journal of Zhejiang University-SCIENCE A, 2007, 8 :946-948
[33]   Congruences for finite triple harmonic sums [J].
FU Xudan ZHOU Xia CAI Tianxin Department of Mathematics Zhejiang University Hangzhou China Hangzhou Foreign Language School Hangzhou China .
Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal), 2007, (06) :946-948
[34]   Congruences for Domb and Almkvist-Zudilin numbers [J].
Sun, Zhi-Hong .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (08) :642-659
[35]   CONGRUENCES FROM q-CATALAN IDENTITIES [J].
Zou, Qing .
TRANSACTIONS ON COMBINATORICS, 2016, 5 (04) :57-67
[36]   Some congruences with q- binomial sums [J].
Omur, Nese ;
Gur, Zehra Betul ;
Koparal, Sibel ;
Elkhiri, Laid .
TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (07) :2006-2027
[37]   Congruences on sums of q-binomial coefficients [J].
Liu, Ji-Cai ;
Petrov, Fedor .
ADVANCES IN APPLIED MATHEMATICS, 2020, 116 (116)
[38]   The Rodriguez-Villegas type congruences for truncated q-hypergeometric functions [J].
Guo, Victor J. W. ;
Pan, Hao ;
Zhang, Yong .
JOURNAL OF NUMBER THEORY, 2017, 174 :358-368
[39]   Supercongruences involving Motzkin numbers and central trinomial coefficients [J].
Liu, Ji-Cai .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2024, 67 (04) :1060-1084
[40]   Congruences for generalized Apéry numbers and Gaussian hypergeometric series [J].
Kalita G. ;
Chetry A.S. .
Research in Number Theory, 3 (1)