Thermoelectric transport in thin films of three-dimensional topological insulators

被引:10
作者
Ma, R. [1 ]
Sheng, L. [2 ,3 ]
Liu, M. [4 ]
Sheng, D. N. [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China
[4] Southeast Univ, Dept Phys, Nanjing 210096, Jiangsu, Peoples R China
[5] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 11期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
SINGLE DIRAC CONE; GRAPHENE; REALIZATION; SYSTEMS; SURFACE; BI2TE3;
D O I
10.1103/PhysRevB.87.115304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We numerically study the thermoelectric transport properties based on the Haldane model of the three-dimensional topological insulator (3DTI) thin film in the presence of an exchange field g and a hybridization gap Delta. The thermoelectric coefficients exhibit rich behaviors as a consequence of the interplay between g and Delta in the 3DTI thin film. For Delta = 0 but g not equal 0, the transverse thermoelectric conductivity alpha(xy) saturates to a universal value 1.38k(B)e/h at the center of each Landau level (LL) in the high-temperature regime, and displays a linear temperature dependence at low temperatures. The semiclassical Mott relation is found to remain valid at low temperatures. If g = 0 but Delta not equal 0, the thermoelectric coefficients are consistent with those of a band insulator. For both g not equal 0 and Delta not equal 0, alpha(xy) saturates to a universal value 0.69k(B)e/h at the center of each LL in the high-temperature regime. We attribute this behavior to the split of all the LLs, caused by the simultaneous presence of nonzero g and Delta, which lifts the degeneracies between Dirac surface states. DOI: 10.1103/PhysRevB.87.115304
引用
收藏
页数:8
相关论文
共 34 条
[1]   Transport in suspended graphene [J].
Adam, S. ;
Das Sarma, S. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :356-360
[2]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[3]   Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 [J].
Chen, Y. L. ;
Analytis, J. G. ;
Chu, J. -H. ;
Liu, Z. K. ;
Mo, S. -K. ;
Qi, X. L. ;
Zhang, H. J. ;
Lu, D. H. ;
Dai, X. ;
Fang, Z. ;
Zhang, S. C. ;
Fisher, I. R. ;
Hussain, Z. ;
Shen, Z. -X. .
SCIENCE, 2009, 325 (5937) :178-181
[4]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470
[5]   NUMERICAL STUDIES OF LOCALIZATION IN DISORDERED SYSTEMS [J].
EDWARDS, JT ;
THOULESS, DJ .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1972, 5 (08) :807-&
[6]   Topological insulators in three dimensions [J].
Fu, Liang ;
Kane, C. L. ;
Mele, E. J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (10)
[7]   In-Plane Transport and Enhanced Thermoelectric Performance in Thin Films of the Topological Insulators Bi2Te3 and Bi2Se3 [J].
Ghaemi, Pouyan ;
Mong, Roger S. K. ;
Moore, J. E. .
PHYSICAL REVIEW LETTERS, 2010, 105 (16)
[9]   Thermopower of gapped bilayer graphene [J].
Hao, Lei ;
Lee, T. K. .
PHYSICAL REVIEW B, 2010, 81 (16)
[10]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067