High-Frequency EMI Attenuation at Source With the Auxiliary Commutated Pole Inverter

被引:70
作者
Charalambous, Apollo [1 ]
Yuan, Xibo [1 ]
McNeill, Neville [2 ]
机构
[1] Univ Bristol, Dept Elect & Elect Engn, Bristol BS8 1UB, Avon, England
[2] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1RD, Lanark, Scotland
关键词
Auxiliary commutated pole inverter (ACPI); electromagnetic interference (EMI); fixed timing; frequency response; more electric aircraft (MEA); soft switching; variable timing; VOLTAGE-SOURCE CONVERTERS; SOFT-SWITCHING INVERTER; ZERO-VOLTAGE; MOTOR-DRIVES; PWM INVERTERS; REDUCTION; EMISSIONS; CURRENTS; IGBT;
D O I
10.1109/TPEL.2017.2743041
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fast-switching power converters are a key enabling technology for the more electric aircraft (MEA), but the generated electromagnetic interference (EMI) poses significant challenges to the electrification effort. To meet the stringent aerospace EMI standards, passive filters are commonly employed, despite the weight and size constraints imposed by the MEA. Alternatively, the EMI source, i.e., the high dv/dt and di/dt slew rates, can be addressed through waveform-shaping techniques. For example, while most soft-switching converters can reduce switching loss, they do so by switching the semiconductor devices in a slower and smoother manner, resulting in the attenuation of high-frequency harmonics. This paper examines the auxiliary commutated pole inverter (ACPI) topology, and its first contribution is the attenuation of the highfrequency content of its EMI source, that is, the output voltage, in a predictable manner, through the active control of the resonant circuit. This is achieved by first, discussing the time-domain characteristics of trapezoidal and S-shaped pulse-trains that lead to attenuated high-frequency harmonic content, and second, by analyzing the equivalent LC circuit of the ACPI. The design of the inverter is then focused on the active control of the resonant parameters, for a predetermined and enhanced output voltage highfrequency response. The second contribution of this paper is the comparison of the EMI performance of hard switching and of three soft-switching modes, fixed-timing control, variable-timing control, and capacitive turn-OFFs, and how this informs important metrics such as power efficiency, current stress, and implementation complexity. Finally, the third contribution is on the trade-offs that arise when the primary design goal is enhanced EMI performance as opposed to switching loss reduction. A 5-kW, 3-phase ACPI prototype is used for validating the high-frequency content attenuation at source. It is shown that the ACPI can achieve a 37 dB harmonic attenuation of its output voltage at 4 MHz, compared to a hard-switched inverter.
引用
收藏
页码:5660 / 5676
页数:17
相关论文
共 50 条
[1]  
[Anonymous], 2010, DO160G
[2]  
[Anonymous], 2007, EL COMP EMC COURS NO
[3]  
Baoquan Kou, 2016, 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), P1259, DOI 10.1109/IPEMC.2016.7512469
[4]  
Barbi I., 1991, PESC '91 Record. 22nd Annual IEEE Power Electronics Specialists Conference (Cat. No.91CH3008-0), P261, DOI 10.1109/PESC.1991.162686
[5]   Reduction of common-mode currents in PWM inverter motor drives [J].
Cacciato, M ;
Consoli, A ;
Scarcella, G ;
Testa, A .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1999, 35 (02) :469-476
[6]   Evaluation of SiC BJTs for High-Power DC-DC Converters [J].
Calderon-Lopez, Gerardo ;
Forsyth, Andrew J. ;
Gordon, David L. ;
McIntosh, Jim R. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (05) :2474-2481
[7]  
Charalambous A, 2016, IEEE IND ELEC, P3305, DOI 10.1109/IECON.2016.7793828
[8]  
Charalambous A, 2015, IEEE ENER CONV, P2650, DOI 10.1109/ECCE.2015.7310032
[9]  
Costa F, 2014, ELECT ENG SER, P1, DOI 10.1002/9781118863183
[10]  
De Doncker R. W., 1990, Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting (Cat. No.90CH2935-5), P1228, DOI 10.1109/IAS.1990.152341