Significant photocatalytic enhancement in methylene blue degradation of Bi2WO6 photocatalysts via graphene hybridization

被引:38
作者
Zhou, Feng [1 ,2 ]
Zhu, Yongfa [2 ]
机构
[1] Dalian Maritime Univ, Dept Mat Sci & Engn, Dalian 116026, Peoples R China
[2] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
powders-chemical preparation; carbon; nanocomposites; photocatalyst;
D O I
10.1007/s40145-012-0008-y
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The hybridization of graphene with Bi2WO6 photocatalysts was employed to enhance the photocatalytic activity. The photocatalytic activity enhancements were dependent on the amount of graphene and it was found that the optimal hybridized amount of graphene was about 1.5 wt%, which was close to the monolayer dispersing of graphene on Bi2WO6 surface. Up to four times of the photocatalytic activity was enhanced by the hybridization of graphene, compared with that of pristine Bi2WO6. The enhancement mechanism of the photocatalytic activity was attributed to the higher separation efficiency and the inhibition of recombination of photoinduced electron-hole pairs. The electronic interaction was verified by the photoelectrochemical measurements.
引用
收藏
页码:72 / 78
页数:7
相关论文
共 26 条
[1]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[2]   A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials [J].
Cao, Aoneng ;
Liu, Zhen ;
Chu, Saisai ;
Wu, Minghong ;
Ye, Zhangmei ;
Cai, Zhengwei ;
Chang, Yanli ;
Wang, Shufeng ;
Gong, Qihuang ;
Liu, Yuanfang .
ADVANCED MATERIALS, 2010, 22 (01) :103-+
[3]   Visible light induced photocatalytic degradation of organic pollutants [J].
Chatterjee, D ;
Dasgupta, S .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2005, 6 (2-3) :186-205
[4]   Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process [J].
Fu, Hongbo ;
Zhang, Liwu ;
Yao, Wenqing ;
Zhu, Yongfa .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2006, 66 (1-2) :100-110
[5]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[6]   Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite [J].
Gao, Erping ;
Wang, Wenzhong ;
Shang, Meng ;
Xu, Jiehui .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (07) :2887-2893
[7]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[8]   Processable aqueous dispersions of graphene nanosheets [J].
Li, Dan ;
Mueller, Marc B. ;
Gilje, Scott ;
Kaner, Richard B. ;
Wallace, Gordon G. .
NATURE NANOTECHNOLOGY, 2008, 3 (02) :101-105
[9]   Carbon-modified Bi2WO6 nanostructures with improved photocatalytic activity under visible light [J].
Li, Yuanyuan ;
Liu, Jinping ;
Huang, Xintang ;
Yu, Jiaguo .
DALTON TRANSACTIONS, 2010, 39 (14) :3420-3425
[10]   Photooxidation pathway of sulforhodamine-B.: Dependence on the adsorption mode on TiO2 exposed to visible light radiation [J].
Liu, GM ;
Li, XZ ;
Zhao, JC ;
Hidaka, H ;
Serpone, N .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (18) :3982-3990