Rigorous numerical approximation of Ruelle-Perron-Frobenius operators and topological pressure of expanding maps

被引:8
作者
Terhesiu, Dalia [1 ]
Froyland, Gary [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1088/0951-7715/21/9/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that for different classes of transformations, including the class of piecewise C-2 expanding maps T : [ 0, 1] O, Ulam's method is an efficient way to numerically approximate the absolutely continuous invariant measure of T. We develop a new extension of Ulam's method and prove that this extension can be used for the numerical approximation of the Ruelle-Perron-Frobenius operator associated with T and the potential phi beta = - beta log vertical bar T-1 vertical bar, where beta is an element of R. In particular, we prove that our extended Ulam's method is a powerful tool for computing the topological pressure P( T, phi beta) and the density of the equilibrium state.
引用
收藏
页码:1953 / 1966
页数:14
相关论文
共 26 条
[1]   Tool condition monitoring using artificial intelligence methods [J].
Balazinski, M ;
Czogala, E ;
Jemielniak, K ;
Leski, J .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2002, 15 (01) :73-80
[2]  
Buzzi J, 2001, ERGOD THEOR DYN SYST, V21, P1035
[3]   ON THE EXISTENCE OF CONFORMAL MEASURES [J].
DENKER, M ;
URBANSKI, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 328 (02) :563-587
[4]   Finite approximations of Frobenius-Perron operators. A solution of Ulam's conjecture to multi-dimensional transformations [J].
Ding, J ;
Zhou, AH .
PHYSICA D, 1996, 92 (1-2) :61-68
[5]   SCALING PROPERTIES OF MULTIFRACTALS AS AN EIGENVALUE PROBLEM [J].
FEIGENBAUM, MJ ;
PROCACCIA, I ;
TEL, T .
PHYSICAL REVIEW A, 1989, 39 (10) :5359-5372
[6]  
Froyland G., 1995, RANDOM COMPUT DYN, V3, P251
[7]   Efficient computation of topological entropy, pressure, conformal measures, and equilibrium states in one dimension [J].
Froyland, Gary ;
Murray, Rua ;
Terhesiu, Dalia .
PHYSICAL REVIEW E, 2007, 76 (03)
[8]  
Giusti E., 1984, Monographs in mathematics
[9]  
Hofbauer F., 1982, ERGOD THEORY DYN SYS, V2, P23, DOI [10.1017/S014338570000955X, DOI 10.1017/S014338570000955X]
[10]   Eigenvalue spectrum of the Frobenius-Perron operator near intermittency [J].
Kaufmann, Z ;
Lustfeld, H ;
Bene, J .
PHYSICAL REVIEW E, 1996, 53 (02) :1416-1421