Two solutions for a class of singular Kirchhoff-type problems with Hardy-Sobolev critical exponent II

被引:2
作者
Liao, Jia-Feng [1 ]
机构
[1] China West Normal Univ, Coll Math Educ, Nanchong 637002, Sichuan, Peoples R China
关键词
Hardy-Sobolev critical exponent; Kirchhoff-type equation; perturbation method; positive solution; singularity; MULTIPLE POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE;
D O I
10.1002/mma.6744
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we devote ourselves to investigate the following singular Kirchhoff-type equation: {-(a+b integral(Omega)vertical bar del u vertical bar(2)dx) Delta u=u5-2s/vertical bar x vertical bar(s) + lambda/vertical bar x vertical bar(beta)w, x is an element of Omega, u>0, x is an element of Omega, u=0, x is an element of delta Omega, where Omega subset of R-3 is a bounded domain with smooth boundary delta Omega, ,0 is an element of Omega, a >= 0, b, lambda > 0, 0 < gamma, s < 1, and 0 <= beta < 5 + gamma/2. By using the variational and perturbation methods, we obtain the existence of two positive solutions, which generalizes and improves the recent results in the literature.
引用
收藏
页码:407 / 418
页数:12
相关论文
共 25 条
[1]   ON A CLASS OF NONLOCAL ELLIPTIC PROBLEMS WITH CRITICAL GROWTH [J].
Alves, C. O. ;
Correa, F. J. S. A. ;
Figueiredo, G. M. .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2010, 2 (03) :409-417
[2]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[3]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[4]   New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems [J].
Cheng, Bitao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :488-495
[5]   A critical Kirchhoff type problem involving a nonlocal operator [J].
Fiscella, Alessio ;
Valdinoci, Enrico .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 94 :156-170
[6]   Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents [J].
Ghoussoub, N ;
Yuan, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5703-5743
[7]   ON FINDING SOLUTIONS OF A KIRCHHOFF TYPE PROBLEM [J].
Huang, Yisheng ;
Liu, Zeng ;
Wu, Yuanze .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (07) :3019-3033
[8]   Positive solutions for singular critical elliptic problems [J].
Kang, DS ;
Peng, SJ .
APPLIED MATHEMATICS LETTERS, 2004, 17 (04) :411-416
[9]   Multiple positive solutions for a Kirchhoff type problem with a critical nonlinearity [J].
Lei, Chun-Yu ;
Liu, Gao-Sheng ;
Guo, Liu-Tao .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 31 :343-355
[10]   Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents [J].
Lei, Chun-Yu ;
Liao, Jia-Feng ;
Tang, Chun-Lei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) :521-538