The Schrodinger equation and Feynman dynamics

被引:0
|
作者
Dezin, AA [1 ]
机构
[1] VA STEKLOV MATH INST,MOSCOW 117333,RUSSIA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:97 / 107
页数:11
相关论文
共 50 条
  • [41] DYNAMICS OF THE SMOOTH POSITON OF A DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Dong, Xiaona
    Li, Maohua
    Hu, Aijuan
    Chen, Caifeng
    ROMANIAN JOURNAL OF PHYSICS, 2022, 67 (9-10):
  • [42] Dynamics of a nonautonomous soliton in a generalized nonlinear Schrodinger equation
    Yang, Zhan-Ying
    Zhao, Li-Chen
    Zhang, Tao
    Feng, Xiao-Qiang
    Yue, Rui-Hong
    PHYSICAL REVIEW E, 2011, 83 (06):
  • [43] Vortex dynamics for the Ginzburg-Landau-Schrodinger equation
    Colliander, JE
    Jerrard, RL
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1998, 1998 (07) : 333 - 358
  • [44] Effective Dynamics of the Nonlinear Schrodinger Equation on Large Domains
    Buckmaster, T.
    Germain, P.
    Hani, Z.
    Shatah, J.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2018, 71 (07) : 1407 - 1460
  • [45] DYNAMICS OF THE BLACK SOLITON IN A REGULARIZED NONLINEAR SCHRODINGER EQUATION
    Pelinovsky, Dmitry E.
    Plum, Michael
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (03) : 1217 - 1231
  • [46] DYNAMICS OF SURFACES AND A GENERALIZED NONLINEAR SCHRODINGER-EQUATION
    BELIC, MR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (08): : L409 - L412
  • [47] Post-blowup dynamics for the nonlinear Schrodinger equation
    Escorcia, Jose M.
    Mailybaev, Alexei A.
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 456
  • [48] ON DYNAMICS OF SOLUTIONS OF THE GENERALIZED NONLINEAR SCHRODINGER-EQUATION
    BASS, FG
    KONOTOP, VV
    VEKSLERCHIK, VE
    ELECTROMAGNETICS, 1991, 11 (3-4) : 407 - 434
  • [49] Nonadiabatic dynamics via the classical limit Schrodinger equation
    Burant, JC
    Tully, JC
    JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (14): : 6097 - 6103
  • [50] Discrete nonlinear Schrodinger equation dynamics in complex networks
    Perakis, F.
    Tsironis, G. P.
    PHYSICS LETTERS A, 2011, 375 (03) : 676 - 679