A physical model of axonal damage due to oxidative stress

被引:11
作者
Counterman, AE
D'Onofrio, TG
Andrews, AM
Weiss, PS
机构
[1] Penn State Univ, Dept Chem & Phys, University Pk, PA 16805 USA
[2] Penn State Univ, Dept Vet & Biomed Sci, University Pk, PA 16805 USA
[3] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16805 USA
关键词
membrane; neurodegeneration; Alzheimer's disease; Parkinson's disease; microtubule;
D O I
10.1073/pnas.0504134103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Oxidative damage is implicated in the pathogenesis of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases, and in normal aging. Here, we model oxidative stress in neurons using photogenerated radicals in a simplified membrane-encapsulated microtubule system. Using fluorescence and differential interference contrast microscopies, we monitor photochemically induced microtubule breakdown on the supported region of membrane in encapsulating synthetic liposomes as a function of lipid composition and environment. Degradation of vesicle-encapsulated microtubules is caused by attack from free radicals formed upon UV excitation of the lipid-soluble fluorescent probe, 6-(9-anthroyloxy)stearic acid. Probe concentration was typically limited to a regime in which microtubule degradation was slow, and microtubule degradation was monitored by changes in the observed protrusion of the membrane surface. The kinetics of microtubule degradation are influenced by lipid saturation level, fluorescent probe concentration, and the presence of free-radical scavengers. This system is sufficient to reproduce some degenerative morphologies found in vivo.
引用
收藏
页码:5262 / 5266
页数:5
相关论文
共 29 条
[1]   Protein oxidation in the brain in Alzheimer's disease [J].
Aksenov, MY ;
Aksenova, MV ;
Butterfield, DA ;
Geddes, JW ;
Markesbery, WR .
NEUROSCIENCE, 2001, 103 (02) :373-383
[2]  
[Anonymous], FREE RADICALS ANTIOX
[3]   Pearling in cells: A clue to understanding cell shape [J].
Bar-Ziv, R ;
Tlusty, T ;
Moses, E ;
Safran, SA ;
Bershadsky, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (18) :10140-10145
[4]   Oxidatively modified proteins in aging and disease [J].
Beal, MF .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 32 (09) :797-803
[5]   Experimental therapeutics in transgenic mouse models of Huntington's disease [J].
Beal, MF ;
Ferrante, RJ .
NATURE REVIEWS NEUROSCIENCE, 2004, 5 (05) :373-384
[6]  
Bray D., 2001, Cell Movements: From Molecules to Motility, V2nd
[7]   Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease [J].
Cutler, RG ;
Kelly, J ;
Storie, K ;
Pedersen, WA ;
Tammara, A ;
Hatanpaa, K ;
Troncoso, JC ;
Mattson, MP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (07) :2070-2075
[8]   Controlling and measuring the interdependence of local properties in biomembranes [J].
D'Onofrio, TG ;
Hatzor, A ;
Counterman, AE ;
Heetderks, JJ ;
Sandel, MJ ;
Weiss, PS .
LANGMUIR, 2003, 19 (05) :1618-1623
[9]   Microtubule polymerization dynamics [J].
Desai, A ;
Mitchison, TJ .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1997, 13 :83-117
[10]   Buckling microtubules in vesicles [J].
Elbaum, M ;
Fygenson, DK ;
Libchaber, A .
PHYSICAL REVIEW LETTERS, 1996, 76 (21) :4078-4081