Soliton-like solutions for a (2+1)-dimensional generalization of the shallow water wave equations

被引:12
作者
Tian, B
Gao, YT
机构
[1] LANZHOU UNIV,DEPT COMP SCI & PHYS,LANZHOU 730000,PEOPLES R CHINA
[2] LANZHOU UNIV,INST SCI & ENGN COMPUTAT,LANZHOU 730000,PEOPLES R CHINA
关键词
D O I
10.1016/0960-0779(95)00118-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a symbolic-computation-based method to obtain a new set of soliton-like solutions for a (2+1)-dimensional generalization of the shallow water wave equations. Solitary waves are shown to be a special case of the set. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:1497 / 1499
页数:3
相关论文
共 7 条
[1]   BREAKING SOLITONS IN 2 + 1-DIMENSIONAL INTEGRABLE EQUATIONS [J].
BOGOYAVLENSKII, OI .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (04) :1-86
[2]   ON THE SPECTRAL TRANSFORM OF A KORTEWEG-DEVRIES EQUATION IN 2 SPATIAL DIMENSIONS [J].
BOITI, M ;
LEON, JJP ;
MANNA, M ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1986, 2 (03) :271-279
[3]   ON A SHALLOW-WATER WAVE-EQUATION [J].
CLARKSON, PA ;
MANSFIELD, EL .
NONLINEARITY, 1994, 7 (03) :975-1000
[4]   ARE ALL THE EQUATIONS OF THE KADOMTSEV-PETVIASHVILI HIERARCHY INTEGRABLE [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) :2848-2852
[5]   NEW FAMILY OF OVERTURNING SOLITON-SOLUTIONS FOR A TYPICAL BREAKING SOLITON EQUATION [J].
GAO, YT ;
TIAN, B .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (12) :97-100
[6]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[7]  
TIAN B, 1996, IN PRESS J PHYS A