Capillary channel flow experiments aboard the International Space Station

被引:18
作者
Conrath, M. [1 ]
Canfield, P. J. [1 ]
Bronowicki, P. M. [1 ]
Dreyer, M. E. [1 ,2 ]
Weislogel, M. M.
Grah, A. [3 ]
机构
[1] Univ Bremen, Ctr Appl Space Technol & Micrograv ZARM, D-28359 Bremen, Germany
[2] Portland State Univ, Dept Mech & Mat Engn, Portland, OR 97207 USA
[3] European Commiss, Inst Energy & Transport, Petten, Netherlands
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 06期
关键词
LIQUID;
D O I
10.1103/PhysRevE.88.063009
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.
引用
收藏
页数:8
相关论文
共 38 条
  • [1] [Anonymous], SPACE FORUM
  • [2] Meandering fluid streams in the presence of flow-rate fluctuations
    Birnir, Bjoern
    Mertens, Keith
    Putkaradze, Vakhtang
    Vorobieff, Peter
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (11)
  • [3] The capillary channel flow experiments on the International Space Station: experiment set-up and first results
    Canfield, P. J.
    Bronowicki, P. M.
    Chen, Y.
    Kiewidt, L.
    Grah, A.
    Klatte, J.
    Jenson, R.
    Blackmore, W.
    Weislogel, M. M.
    Dreyer, M. E.
    [J]. EXPERIMENTS IN FLUIDS, 2013, 54 (05)
  • [4] CAPILLARY RISE OF LIQUID BETWEEN PARALLEL PLATES UNDER MICROGRAVITY
    DREYER, M
    DELGADO, A
    RATH, HJ
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1994, 163 (01) : 158 - 168
  • [5] Nonlinear dynamics and breakup of free-surface flows
    Eggers, J
    [J]. REVIEWS OF MODERN PHYSICS, 1997, 69 (03) : 865 - 929
  • [6] Flow and Stability of Rivulets on Heated Surfaces With Topography
    Gambaryan-Roisman, Tatiana
    Stephan, Peter
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2009, 131 (03): : 1 - 6
  • [7] Stability limits of unsteady open capillary channel flow
    Grah, Aleksander
    Haake, Dennis
    Rosendahl, Uwe
    Klatte, Joerg
    Dreyer, Michael E.
    [J]. JOURNAL OF FLUID MECHANICS, 2008, 600 : 271 - 289
  • [8] Dynamic stability analysis for capillary channel flow: One-dimensional and three-dimensional computations and the equivalent steady state technique
    Grah, Aleksander
    Dreyer, Michael E.
    [J]. PHYSICS OF FLUIDS, 2010, 22 (01) : 1 - 11
  • [9] Biofluid mechanics in flexible tubes
    Grotberg, JB
    Jensen, OE
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2004, 36 : 121 - 147
  • [10] Flow rate limitation in open capillary channel flows
    Haake, Dennis
    Rosendahl, Uwe
    Ohlhoff, Antje
    Dreyer, Michael E.
    [J]. INTERDISCIPLINARY TRANSPORT PHENOMENA IN THE SPACE SCIENCES, 2006, 1077 : 443 - 458