On the accuracy of a covariance matching method for continuous-time errors-in-variables identification

被引:11
作者
Soderstrom, Torsten [1 ]
Irshad, Yasir [2 ]
Mossberg, Magnus [2 ]
Zheng, Wei Xing [3 ]
机构
[1] Uppsala Univ, Div Syst & Control, Dept Informat Technol, SE-75105 Uppsala, Sweden
[2] Karlstad Univ, Dept Engn & Phys, SE-65188 Karlstad, Sweden
[3] Univ Western Sydney, Sch Comp & Math, Penrith, NSW 1797, Australia
基金
瑞典研究理事会; 澳大利亚研究理事会;
关键词
Continuous-time systems; Errors-in-variables systems; Parameter estimation; Covariance matching; Accuracy analysis; MODEL;
D O I
10.1016/j.automatica.2013.07.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An analysis of a covariance matching method for continuous-time errors-in-variables system identification from discrete-time data is made. In the covariance matching method, the noise-free input signal is not explicitly modeled and only assumed to be a stationary process. The asymptotic normalized covariance matrix, valid for a large number of data and a small sampling interval, is derived. This involves the evaluation of a covariance matrix of estimated covariance elements and estimated derivatives of such elements, and large parts of the paper are devoted to this task. The latter covariance matrix consists of two parts, where the first part contains integrals that are approximations of Riemann sums, and the second part depends on the measurement noise variances. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2982 / 2993
页数:12
相关论文
共 50 条
[21]   Recursive Identification of Errors-in-Variables Systems Based on the Correlation Analysis [J].
Shujun Fan ;
Feng Ding ;
Tasawar Hayat .
Circuits, Systems, and Signal Processing, 2020, 39 :5951-5981
[22]   When Are Errors-in-Variables Aspects Important to Consider in System Identification? [J].
Soderstrom, Torsten ;
Soverini, Umberto .
2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, :315-320
[23]   Bias-Correction Errors-in-Variables Hammerstein Model Identification [J].
Hou, Jie ;
Su, Hao ;
Yu, Chengpu ;
Chen, Fengwei ;
Li, Penghua .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (07) :7268-7279
[24]   An iterative identification method for linear continuous-time systems [J].
Campi, Marco C. ;
Sugie, Toshiharu ;
Sakai, Fumitoshi .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (07) :1661-1669
[25]   UNBIASED RLS IDENTIFICATION OF ERRORS-IN-VARIABLES MODELS IN THE PRESENCE OF CORRELATED NOISE [J].
Arablouei, Reza ;
Dogancay, Kutluyil ;
Adali, Tuelay .
2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, :261-265
[26]   Combination of UD factorization and bias compensation for errors-in-variables model identification [J].
Xiao D.-Y. ;
Yang F. ;
Zhang Y.-N. ;
Geng L.-H. .
Xiao, De-Yun (xiaody@tsinghua.edu.cn), 2018, South China University of Technology (35) :949-955
[27]   Robust Global Identification of LPV Errors-in-Variables Systems With Incomplete Observations [J].
Liu, Xin ;
Han, Guangjie ;
Yang, Xianqiang .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (06) :3799-3807
[28]   Variance-covariance component estimation for structured errors-in-variables models with cross-covariances [J].
Lv, Zhipeng ;
Sui, Lifen .
STUDIA GEOPHYSICA ET GEODAETICA, 2019, 63 (04) :485-508
[29]   IDENTIFICATION OF CONTINUOUS-TIME MIMO SYSTEMS VIA TIME MOMENTS [J].
SUBRAHMANYAM, AVB ;
SAHA, DC ;
RAO, GP .
CONTROL-THEORY AND ADVANCED TECHNOLOGY, 1995, 10 (04) :1359-1378
[30]   Accuracy analysis of bias-eliminating least squares estimates for errors-in-variables systems [J].
Hong, Mei ;
Soederstroem, Torsten ;
Zheng, Wei Xing .
AUTOMATICA, 2007, 43 (09) :1590-1596