A combination of proper orthogonal decomposition-discrete empirical interpolation method (POD-DEIM) and meshless local RBF-DQ approach for prevention of groundwater contamination

被引:52
作者
Dehghan, Mehdi [1 ]
Abbaszadeh, Mostafa [1 ]
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, 424 Hafez Ave, Tehran 15914, Iran
关键词
Meshless local radial basis functions (RBFs) collocation method; Differential quadrature (DQ) technique; Proper orthogonal decomposition (POD) technique; Discrete empirical interpolation method (DEIM); Groundwater equation; Groundwater contamination and water sciences; PARTIAL-DIFFERENTIAL-EQUATIONS; RADIAL BASIS FUNCTIONS; DIFFUSION-REACTION EQUATIONS; NONLINEAR MODEL-REDUCTION; REDUCED-ORDER STRATEGIES; HEAT-CONDUCTION PROBLEMS; SHALLOW-WATER EQUATIONS; FREE GALERKIN METHOD; NUMERICAL-SOLUTION; FD METHOD;
D O I
10.1016/j.camwa.2017.11.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main presented idea is to reduce the used CPU time for employing the local radial basis functions-differential quadrature (LRBF-DQ) method. To this end, the proper orthogonal decomposition-discrete empirical interpolation method (POD-DEIM) has been combined with the LRBF-DQ technique. For checking the ability of the new procedure, the groundwater equation is solved. This equation has been classified in category of system of advection-diffusion equations. The solutions of advection equations have some shock, thus, special numerical methods should be applied for example discontinuous Galerkin and finite volume methods. Moreover, several test problems are given that show the acceptable accuracy and efficiency of the proposed schemes. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1390 / 1412
页数:23
相关论文
共 70 条
[1]  
[Anonymous], 2000, P 16 IM WORLD C SCI
[2]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[3]   Gaussian RBF-FD weights and its corresponding local truncation errors [J].
Bayona, Victor ;
Moscoso, Miguel ;
Kindelan, Manuel .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (09) :1361-1369
[4]   Optimal variable shape parameter for multiquadric based RBF-FD method [J].
Bayona, Victor ;
Moscoso, Miguel ;
Kindelan, Manuel .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (06) :2466-2481
[5]   Optimal constant shape parameter for multiquadric based RBF-FD method [J].
Bayona, Victor ;
Moscoso, Miguel ;
Kindelan, Manuel .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (19) :7384-7399
[6]   RBF-FD formulas and convergence properties [J].
Bayona, Victor ;
Moscoso, Miguel ;
Carretero, Manuel ;
Kindelan, Manuel .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (22) :8281-8295
[7]   DIFFERENTIAL QUADRATURE - TECHNIQUE FOR RAPID SOLUTION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS [J].
BELLMAN, R ;
CASTI, J ;
KASHEF, BG .
JOURNAL OF COMPUTATIONAL PHYSICS, 1972, 10 (01) :40-&
[8]   Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs [J].
Bollig, Evan F. ;
Flyer, Natasha ;
Erlebacher, Gordon .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (21) :7133-7151
[9]   Lattice Boltzmann method for groundwater flow in non-orthogonal structured lattices [J].
Budinski, Ljubomir ;
Fabian, Julius ;
Stipic, Matija .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (10) :2601-2615
[10]   Reduced-order modeling of the upper tropical Pacific Ocean model using proper orthogonal decomposition [J].
Cao, Yanhua ;
Zhu, Jiang ;
Luo, Zhendong ;
Navon, I. M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (8-9) :1373-1386