A finite volume element method for thermal convection problems

被引:2
作者
Rui, HX [1 ]
机构
[1] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
关键词
finite volume element method; thermal convection problem; error estimate;
D O I
10.1016/S0252-9602(17)30368-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the finite volume element method for the thermal convection problem with the infinite Prandtl number. The author uses a conforming piecewise linear function on a fine triangulation for velocity and temperature, and a piecewise constant function on a coarse triangulation for pressure. For general triangulation the optimal order H-1 norm error estimates axe given.
引用
收藏
页码:129 / 138
页数:10
相关论文
共 12 条
[1]  
ADAMS R, 1975, SOBOLIEV SPACES
[2]  
[Anonymous], 1980, NUMERICAL HEAT TRANS
[3]  
Babuska I., 1972, MATH FDN FINITE ELEM
[4]  
BERNARDI C, 1985, MATH COMPUT, V44, P71, DOI 10.1090/S0025-5718-1985-0771031-7
[5]  
CAI ZQ, 1991, NUMER MATH, V58, P713
[6]  
CAI ZQ, 1990, SIAM J NUMER ANAL, V27, P635
[8]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[9]  
Girault V., 2012, FINITE ELEMENT METHO, V5
[10]  
Huang JG, 1998, SIAM J NUMER ANAL, V35, P1762, DOI 10.1137/S0036142994264699