Lower Confidence Limits on the Generalized Exponential Distribution Percentiles Under Progressive Type-I Interval Censoring

被引:12
|
作者
Chen, Ding-Geng [1 ,2 ,3 ]
Lio, Y. L. [4 ]
Jiang, Nan [4 ]
机构
[1] Univ Rochester, Med Ctr, Sch Nursing, Dept Biostat & Computat Biol, Rochester, NY 14627 USA
[2] Univ Rochester, Med Ctr, Sch Med & Dent, Rochester, NY 14627 USA
[3] Georgia So Univ, Jiann Ping Hsu Coll Publ Hlth, Statesboro, GA 30460 USA
[4] Univ S Dakota, Dept Math Sci, Vermillion, SD 57069 USA
关键词
Bootstrapping; Maximum likelihood estimation; Progressive type-I interval censoring; WEIBULL-DISTRIBUTION; FAMILY;
D O I
10.1080/03610918.2012.695842
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In industrial life test and survival analysis, the percentile estimation is always a practical issue with lower confidence bound required for maintenance purpose. Sampling distributions for the maximum likelihood estimators of percentiles are usually unknown. Bootstrap procedures are common ways to estimate the unknown sampling distributions. Five parametric bootstrap procedures are proposed to estimate the confidence lower bounds on maximum likelihood estimators for the generalized exponential (GE) distribution percentiles under progressive type-I interval censoring. An intensive simulation is conducted to evaluate the performances of proposed procedures. Finally, an example of 112 patients with plasma cell myeloma is given for illustration.
引用
收藏
页码:2106 / 2117
页数:12
相关论文
共 50 条