Lossless quantum data compression and variable-length coding

被引:23
作者
Bostroem, K [1 ]
Felbinger, T [1 ]
机构
[1] Univ Potsdam, Potsdam, Germany
关键词
D O I
10.1103/PhysRevA.65.032313
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In order to compress quantum messages without loss of information it is necessary to allow the length of the encoded messages to vary. We develop a general framework for variable-length quantum messages in close analogy to the classical case and show that lossless compression is only possible if the message to be compressed is known to the sender. The lossless compression of an ensemble of messages is bounded from below by its von-Neumann entropy. We show that it is possible to reduce the number of qbits passing through a quantum channel even below the von Neumann entropy by adding a classical side channel. We give an explicit communication protocol that realizes lossless and instantaneous quantum data compression and apply it to a simple example. This protocol can be used for both online quantum communication and storage of quantum data.
引用
收藏
页数:15
相关论文
共 17 条
  • [1] General fidelity limit for quantum channels
    Barnum, H
    Fuchs, CA
    Jozsa, R
    Schumacher, B
    [J]. PHYSICAL REVIEW A, 1996, 54 (06): : 4707 - 4711
  • [2] BOSTROEM K, QUANTPH0009073
  • [3] BOSTROEM K, QUANTPH0009052
  • [4] BRAUNSTEIN S, QUANTPH9805080
  • [5] Reversible arithmetic coding for quantum data compression
    Chuang, IL
    Modha, DS
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) : 1104 - 1116
  • [6] Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
  • [7] FELBINGER T, QMATRIXA MATH PACKAG
  • [8] Classical information capacity of a quantum channel
    Hausladen, P
    Jozsa, R
    Schumacher, B
    Westmoreland, M
    Wootters, WK
    [J]. PHYSICAL REVIEW A, 1996, 54 (03): : 1869 - 1876
  • [9] A NEW PROOF OF THE QUANTUM NOISELESS CODING THEOREM
    JOZSA, R
    SCHUMACHER, B
    [J]. JOURNAL OF MODERN OPTICS, 1994, 41 (12) : 2343 - 2349
  • [10] JOZSA R, QUANTPH9805017