Wrist Ultrasound Segmentation by Deep Learning

被引:3
|
作者
Zhou, Yuyue [1 ]
Rakkunedeth, Abhilash [1 ]
Keen, Christopher [1 ]
Knight, Jessica [1 ]
Jaremko, Jacob L. [1 ]
机构
[1] Univ Alberta, Edmonton, AB, Canada
来源
ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2022 | 2022年 / 13263卷
关键词
Wrist ultrasound; Image segmentation; Deep learning; UNet; GAN; Pix2pix; FOREARM FRACTURES; DIAGNOSIS;
D O I
10.1007/978-3-031-09342-5_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ultrasound (US) is an increasingly popular medical imaging modality in clinical practice due to its low cost, portability, and real-time dynamic display. It is ideally suited for wrist and elbow fracture detection in children as it does not involve any ionizing radiation. Automatic assessment of wrist images requires delineation of relevant bony structures seen in the image including the radial epiphysis, radial metaphysis and carpal bones. With the advent of artificial intelligence, researchers are using deep learning models for segmentation in US scans including these to help with automatic diagnosis and disease progression. However, certain specific characteristics of US such as poor signal to noise ratio, presence of imaging artifacts and blurred boundaries around anatomical structures make segmentation challenging. In this research, we applied deep learning models including UNet and Generative Adversarial Network (GAN) to segment bony structures from a wrist US scan. Our ensemble models were trained on wrist 3D US datasets containing 10,500 images in 47 patients acquired from the University of Alberta Hospital (UAH) pediatric emergency department using a Philips iU22 ultrasound scanner. In general, although UNet gave the highest DICE score, precision and Jaccard Index, GAN achieved the highest recall. Our study shows the feasibility of using deep learning techniques for automatically segmenting bony regions from a wrist US image which could lead to automatic detection of fractures in pediatric emergencies. Github.
引用
收藏
页码:230 / 237
页数:8
相关论文
共 50 条
  • [41] Deep learning models for bolus segmentation in videofluoroscopic swallow studies
    Li, Wuqi
    Mao, Shitong
    Mahoney, Amanda S.
    Petkovic, Sandra
    Coyle, James L.
    Sejdic, Ervin
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (01)
  • [42] NOISE-TOLERANT DEEP LEARNING FOR HISTOPATHOLOGICAL IMAGE SEGMENTATION
    Li, Weizhi
    Qian, Xiaoning
    Ji, Jim
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3075 - 3079
  • [43] Deep Learning for Skin Lesion Segmentation
    Mishra, Rashika
    Daescu, Ovidiu
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 1189 - 1194
  • [44] Image Segmentation for Radar Signal Deinterleaving Using Deep Learning
    Nuhoglu, Mustafa Atahan
    Alp, Yasar Kemal
    Ulusoy, Mehmet Ege Can
    Cirpan, Hakan Ali
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (01) : 541 - 554
  • [45] Deep learning in image segmentation for cancer
    Rai, Robba
    JOURNAL OF MEDICAL RADIATION SCIENCES, 2024, 71 (04) : 505 - 508
  • [46] Deep learning-based localization and segmentation of wrist fractures on X-ray radiographs
    Joshi, Deepa
    Singh, Thipendra P.
    Joshi, Anil Kumar
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (21): : 19061 - 19077
  • [47] Deep learning-based localization and segmentation of wrist fractures on X-ray radiographs
    Deepa Joshi
    Thipendra P. Singh
    Anil Kumar Joshi
    Neural Computing and Applications, 2022, 34 : 19061 - 19077
  • [48] EfficientU-Net: A Novel Deep Learning Method for Breast Tumor Segmentation and Classification in Ultrasound Images
    Dar, Mohsin Furkh
    Ganivada, Avatharam
    NEURAL PROCESSING LETTERS, 2023, 55 (08) : 10439 - 10462
  • [49] Deep Learning based Fetal Middle Cerebral Artery Segmentation in Large-scale Ultrasound Images
    Wang, Shuo
    Hua, Yang
    Cao, Yunyun
    Song, Tao
    Xue, Zhengui
    Gong, Xiaoping
    Wang, Guanjie
    Ma, Ruhui
    Guan, Haibing
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 532 - 539
  • [50] EfficientU-Net: A Novel Deep Learning Method for Breast Tumor Segmentation and Classification in Ultrasound Images
    Mohsin Furkh Dar
    Avatharam Ganivada
    Neural Processing Letters, 2023, 55 : 10439 - 10462