A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting

被引:214
|
作者
Namy, O
Moran, SJ
Stuart, DI
Gilbert, RJC
Brierley, I
机构
[1] Univ Cambridge, Dept Pathol, Div Virol, Cambridge CB2 1QP, England
[2] Univ Oxford, Div Struct Biol, Oxford OX3 7BN, England
[3] Univ Oxford, Cent Chem Lab, Oxford Ctr Mol Sci, Oxford OX1 3QH, England
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会; 英国惠康基金;
关键词
D O I
10.1038/nature04735
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The triplet-based genetic code requires that translating ribosomes maintain the reading frame of a messenger RNA faithfully to ensure correct protein synthesis(1). However, in programmed -1 ribosomal frameshifting(2), a specific subversion of frame maintenance takes place, wherein the ribosome is forced to shift one nucleotide backwards into an overlapping reading frame and to translate an entirely new sequence of amino acids. This process is indispensable in the replication of numerous viral pathogens, including HIV and the coronavirus associated with severe acute respiratory syndrome(3), and is also exploited in the expression of several cellular genes(4). Frameshifting is promoted by an mRNA signal composed of two essential elements: a heptanucleotide 'slippery' sequence(5) and an adjacent mRNA secondary structure, most often an mRNA pseudoknot(6). How these components operate together to manipulate the ribosome is unknown. Here we describe the observation of a ribosome - mRNA pseudoknot complex that is stalled in the process of -1 frameshifting. Cryoelectron microscopic imaging of purified mammalian 80S ribosomes from rabbit reticulocytes paused at a coronavirus pseudoknot reveals an intermediate of the frameshifting process. From this it can be seen how the pseudoknot interacts with the ribosome to block the mRNA entrance channel, compromising the translocation process and leading to a spring-like deformation of the P-site transfer RNA. In addition, we identify movements of the likely eukaryotic ribosomal helicase and confirm a direct interaction between the translocase eEF2 and the P-site tRNA. Together, the structural changes provide a mechanical explanation of how the pseudoknot manipulates the ribosome into a different reading frame.
引用
收藏
页码:244 / 247
页数:4
相关论文
共 50 条
  • [31] The stimulatory RNA of the Visna-Maedi retrovirus ribosomal frameshifting signal is an unusual pseudoknot with an interstem element
    Pennell, Simon
    Manktelow, Emily
    Flatt, Andrew
    Kelly, Geoff
    Smerdon, Stephen J.
    Brierley, Ian
    RNA, 2008, 14 (07) : 1366 - 1377
  • [32] Stem-loop structures can effectively substitute for an RNA pseudoknot in-1 ribosomal frameshifting
    Yu, Chien-Hung
    Noteborn, Mathieu H.
    Pleij, Cornelis W. A.
    Olsthoorn, Rene C. L.
    NUCLEIC ACIDS RESEARCH, 2011, 39 (20) : 8952 - 8959
  • [33] Programmed - 1 ribosomal frameshifting in the SARS coronavirus
    Dos Ramos, F
    Carrasco, M
    Doyle, T
    Brierley, I
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2004, 32 : 1081 - 1083
  • [34] Thermodynamic control of −1 programmed ribosomal frameshifting
    Lars V. Bock
    Neva Caliskan
    Natalia Korniy
    Frank Peske
    Marina V. Rodnina
    Helmut Grubmüller
    Nature Communications, 10
  • [35] Transactivation of programmed ribosomal frameshifting by a viral protein
    Li, Yanhua
    Treffers, Emmely E.
    Napthine, Sawsan
    Tas, Ali
    Zhu, Longchao
    Sun, Zhi
    Bell, Susanne
    Mark, Brian L.
    van Veelen, Peter A.
    van Hemert, Martijn J.
    Firth, Andrew E.
    Brierley, Ian
    Snijder, Eric J.
    Fang, Ying
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (21) : E2172 - E2181
  • [36] Programmed Ribosomal Frameshifting Mediates Expression of the α-Carboxysome
    Chaijarasphong, Thawatchai
    Nichols, Robert J.
    Kortright, Kaitlyn E.
    Nixon, Charlotte F.
    Teng, Poh K.
    Oltrogge, Luke M.
    Savage, David F.
    JOURNAL OF MOLECULAR BIOLOGY, 2016, 428 (01) : 153 - 164
  • [37] Programmed ribosomal frameshifting is SIV is induced by a highly structured RNA stem-loop
    Marcheschi, Ryan J.
    Staple, David W.
    Butcher, Samuel E.
    JOURNAL OF MOLECULAR BIOLOGY, 2007, 373 (03) : 652 - 663
  • [38] Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting
    Hansen, Thomas M.
    Reihani, S. Nader S.
    Oddershede, Lene B.
    Sorensen, Michael A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (14) : 5830 - 5835
  • [39] Carrimycin inhibits coronavirus replication by decreasing the efficiency of programmed-1 ribosomal frameshifting through directly binding to the RNA pseudoknot of viral frameshift-stimulatory element
    Li, Hongying
    Li, Jianrui
    Li, Jiayu
    Li, Hu
    Wang, Xuekai
    Jiang, Jing
    Lei, Lei
    Sun, Han
    Tang, Mei
    Dong, Biao
    He, Weiqing
    Si, Shuyi
    Hong, Bin
    Li, Yinghong
    Song, Danqing
    Peng, Zonggen
    Che, Yongsheng
    Jiang, Jian-Dong
    ACTA PHARMACEUTICA SINICA B, 2024, 14 (06) : 2567 - 2580
  • [40] Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting
    Giedroc, DP
    Theimer, CA
    Nixon, PL
    JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (02) : 167 - 185