Lithium-Oxygen Cells: An Analytical Model to Explain Key Features in the Discharge Voltage Profiles

被引:19
作者
Rinaldi, Ali [1 ]
Wijaya, Olivia [1 ,2 ]
Hoster, Harry [1 ,2 ,3 ]
机构
[1] Tech Univ Munich, TUM CREATE, 1 CREATE Way,10-02 CREATE Tower, Singapore 138602, Singapore
[2] Nanyang Technol Univ, Mat Sci & Engn, 11 Fac Ave, Singapore 639977, Singapore
[3] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
基金
新加坡国家研究基金会;
关键词
batteries; discharge voltage profiles; EC mechanism; Li-O-2; cells; modelling; NONAQUEOUS LI-O-2; CARBON SURFACE; AIR BATTERIES; LI2O2; GROWTH; ELECTROLYTE; REDUCTION; TRANSPORT; PEROXIDE; CAPACITY; KINETICS;
D O I
10.1002/celc.201600184
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-oxygen (Li-O-2) cells are popular because of their potentially high energy density. A characteristic fingerprint of a given cell is the voltage profile during constant-current discharge. We suggest that the typical initial dip and the following increase of the voltage result from a temporary increase and slow decrease in the concentration of dissolved superoxide, respectively, feeding into the Nernst equation. The steady-state superoxide concentration decreases as the surface area of the solid precipitation product (Li2O2) increases. Importantly, these products bury the electrochemically active carbon surface. Assuming that the electrochemical step only occurs on bare carbon, the Tafel equation provides an expression for the increasing overpotential as a result of the shrinking effective electrode area. This boils the discharge voltage profile down to the sum of two logarithms, grasping all relevant features in the recorded discharge voltage profiles.
引用
收藏
页码:1944 / 1950
页数:7
相关论文
共 47 条
[1]   Electrolyte-Directed Reactions of the Oxygen Electrode in Lithium-Air Batteries [J].
Abraham, K. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (02) :A3021-A3031
[2]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[3]   Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge [J].
Adams, Brian D. ;
Radtke, Claudio ;
Black, Robert ;
Trudeau, Michel L. ;
Zaghib, Karim ;
Nazar, Linda F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1772-1778
[4]  
Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/NCHEM.2132, 10.1038/nchem.2132]
[5]  
[Anonymous], 2011, ANGEW CHEM, DOI DOI 10.1002/ANGE.201100879
[6]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[7]   A Critical Review of Li/Air Batteries [J].
Christensen, Jake ;
Albertus, Paul ;
Sanchez-Carrera, Roel S. ;
Lohmann, Timm ;
Kozinsky, Boris ;
Liedtke, Ralf ;
Ahmed, Jasim ;
Kojic, Aleksandar .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) :R1-R30
[8]   Sodium-oxygen batteries: a new class of metal-air batteries [J].
Das, Shyamal K. ;
Lau, Sampson ;
Archer, Lynden A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (32) :12623-12629
[9]  
Freunberger SA, 2011, ANGEW CHEM, V123, P8768
[10]   The Lithium-Oxygen Battery with Ether-Based Electrolytes [J].
Freunberger, Stefan A. ;
Chen, Yuhui ;
Drewett, Nicholas E. ;
Hardwick, Laurence J. ;
Barde, Fanny ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (37) :8609-8613