A comparison of Raman and photoluminescence spectra for the assessment of single-wall carbon nanotube sample quality

被引:4
作者
Kastner, Matthias [1 ]
Stahl, Sabine [1 ]
Vollert, Ivonne [1 ]
Loi, Christian [1 ]
Ruehl, Nicolas [1 ]
Hertel, Tobias [1 ]
Schoeppler, Friedrich [1 ]
机构
[1] Univ Wurzburg, Inst Phys & Theoret Chem, Dept Chem & Pharm, D-97074 Wurzburg, Germany
关键词
Carbon nanotubes; Photoluminescence; Raman spectroscopy; CVD; Defect density; Quantum yield; Sample quality; TEMPERATURE; GROWTH; SPECTROSCOPY; DIAMETER; DENSITY; TIME;
D O I
10.1016/j.cplett.2015.06.076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We compare mass-yields, Raman band intensity ratios and photoluminescence quantum yields (PLQY) of (6,5) single-wall carbon nanotubes (SWNT), produced by alcohol catalytic chemical vapor deposition at reaction temperatures ranging from 600 degrees C to 850 degrees C. The highest PLQYs for suspensions of unprocessed raw material and for density gradient ultracentrifuged (DGU) samples are obtained if SWNTs were grown at 850 degrees C. Accordingly, the Raman defect band intensity ratios of DGU samples decrease toward the highest CVD growth temperatures. In contrast, PLQYs of non-DGU processed, polydisperse raw material suspensions, do not correlate with commonly used Raman D/G defect band intensity ratios. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:245 / 249
页数:5
相关论文
共 50 条
[31]   Structure changes of single-wall carbon nanotubes and single-wall carbon nanohorns caused by heat treatment [J].
Yudasaka, M ;
Ichihashi, T ;
Kasuya, D ;
Kataura, H ;
Iijima, S .
CARBON, 2003, 41 (06) :1273-1280
[32]   Photoluminescence Quantum Yield of Single-Wall Carbon Nanotubes Corrected for the Photon Reabsorption Effect [J].
Wei, Xiaojun ;
Tanaka, Takeshi ;
Li, Shilong ;
Tsuzuki, Mayumi ;
Wang, Guowei ;
Yao, Zhihui ;
Li, Linhai ;
Yomogida, Yohei ;
Hirano, Atsushi ;
Liu, Huaping ;
Kataura, Hiromichi .
NANO LETTERS, 2020, 20 (01) :410-417
[33]   Fermi energy dependence of the G-band resonance Raman spectra of single-wall carbon nanotubes [J].
Park, J. S. ;
Sasaki, K. ;
Saito, R. ;
Izumida, W. ;
Kalbac, M. ;
Farhat, H. ;
Dresselhaus, G. ;
Dresselhaus, M. S. .
PHYSICAL REVIEW B, 2009, 80 (08)
[34]   Electronic and vibration spectra of hydrogenated carbon single-wall nanotubes [J].
Bazhenov, A. V. ;
Fursova, T. N. ;
Bashkin, I. O. ;
Antonov, V. E. ;
Kondrat'eva, I. V. ;
Krestinin, A. V. ;
Shul'ga, Yu. M. .
FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2006, 14 (2-3) :165-170
[35]   Structure-Resolved Monitoring of Single-Wall Carbon Nanotube Functionalization from Raman Intermediate Frequency Modes [J].
Soltani, Nima ;
Zheng, Yu ;
Bachilo, Sergei M. ;
Weisman, R. Bruce .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (35) :7960-7966
[36]   Spectroscopy of small diameter single-wall carbon nanotubes [J].
Jorio, A ;
Fantini, C ;
Cançado, LG ;
Ribeiro, HB ;
Santos, AP ;
Furtado, CA ;
Dresselhaus, MS ;
Dresselhaus, G ;
Samsonidze, GG ;
Chou, SG ;
Grueneis, A ;
Jiang, J ;
Kobayashi, N ;
Saito, R ;
Pimenta, MA .
Electronic Properties of Novel Nanostructures, 2005, 786 :406-410
[37]   Suppression of single-wall carbon nanotube redox reaction by adsorbed proteins [J].
Nakayama, Tomohito ;
Tanaka, Takeshi ;
Shiraki, Kentaro ;
Hase, Muneaki ;
Hirano, Atsushi .
APPLIED PHYSICS EXPRESS, 2018, 11 (07)
[38]   Single-wall carbon nanotube based electrochemical immunoassay for leukemia detection [J].
Gulati, Payal ;
Kaur, Prabhjot ;
Rajam, M., V ;
Srivastava, Tapasya ;
Mishra, Prabhash ;
Islam, S. S. .
ANALYTICAL BIOCHEMISTRY, 2018, 557 :111-119
[39]   Lattice vibrations of a single-wall boron nitride nanotube [J].
Jeon, Gun Sang ;
Mahan, G. D. .
PHYSICAL REVIEW B, 2009, 79 (08)
[40]   Bolometric detector on the basis of single-wall carbon nanotube/polymer composite [J].
Aliev, Ali E. .
INFRARED PHYSICS & TECHNOLOGY, 2008, 51 (06) :541-545