A comparison of Raman and photoluminescence spectra for the assessment of single-wall carbon nanotube sample quality

被引:4
作者
Kastner, Matthias [1 ]
Stahl, Sabine [1 ]
Vollert, Ivonne [1 ]
Loi, Christian [1 ]
Ruehl, Nicolas [1 ]
Hertel, Tobias [1 ]
Schoeppler, Friedrich [1 ]
机构
[1] Univ Wurzburg, Inst Phys & Theoret Chem, Dept Chem & Pharm, D-97074 Wurzburg, Germany
关键词
Carbon nanotubes; Photoluminescence; Raman spectroscopy; CVD; Defect density; Quantum yield; Sample quality; TEMPERATURE; GROWTH; SPECTROSCOPY; DIAMETER; DENSITY; TIME;
D O I
10.1016/j.cplett.2015.06.076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We compare mass-yields, Raman band intensity ratios and photoluminescence quantum yields (PLQY) of (6,5) single-wall carbon nanotubes (SWNT), produced by alcohol catalytic chemical vapor deposition at reaction temperatures ranging from 600 degrees C to 850 degrees C. The highest PLQYs for suspensions of unprocessed raw material and for density gradient ultracentrifuged (DGU) samples are obtained if SWNTs were grown at 850 degrees C. Accordingly, the Raman defect band intensity ratios of DGU samples decrease toward the highest CVD growth temperatures. In contrast, PLQYs of non-DGU processed, polydisperse raw material suspensions, do not correlate with commonly used Raman D/G defect band intensity ratios. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:245 / 249
页数:5
相关论文
共 50 条
[21]   Raman study of nanotube-substrate interaction using single-wall carbon nanotubes grown on crystalline quartz [J].
Soares, Jaqueline S. ;
Barros, Eduardo B. ;
Shadmi, Nitzan ;
Joselevich, Ernesto ;
Jorio, Ado .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (11) :2536-2539
[22]   Comparative measures of single-wall carbon nanotube dispersion [J].
Fagan, J. A. ;
Landi, B. J. ;
Mandelbaum, I. ;
Simpson, J. R. ;
Bajpai, V. ;
Bauer, B. J. ;
Migler, K. ;
Walker, A. R. Hight ;
Raffaelle, R. ;
Hobbie, E. K. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (47) :23801-23805
[23]   Spectroscopic analysis of single-wall carbon nanotubes and carbon nanotube peapods [J].
Pfeiffer, R ;
Kuzmany, H ;
Plank, W ;
Pichler, T ;
Kataura, H ;
Achiba, Y .
DIAMOND AND RELATED MATERIALS, 2002, 11 (3-6) :957-960
[24]   Single-wall carbon nanotube chemical attachment at platinum electrodes [J].
Rosario-Castro, Belinda I. ;
Contes-de-Jesus, Enid J. ;
Lebron-Colon, Marisabel ;
Meador, Michael A. ;
Scibioh, M. Aulice ;
Cabrera, Carlos R. .
APPLIED SURFACE SCIENCE, 2010, 257 (02) :340-353
[25]   Dynamic response of a single-wall carbon nanotube subjected to impact [J].
Wang, X ;
Dai, HL .
CARBON, 2006, 44 (01) :167-170
[26]   Influence of the gas pressure on single-wall carbon nanotube formation [J].
Hinkov, I ;
Farhat, S ;
Scott, CD .
CARBON, 2005, 43 (12) :2453-2462
[27]   Hydrogenation Dynamics Process of Single-Wall Carbon Nanotube Twisted [J].
De Sousa, J. M. ;
Autreto, P. A. S. ;
Galvao, D. S. .
CHEMICAL PHYSICS LETTERS, 2020, 739
[28]   Electrochemical and Raman spectroelectrochemical investigation of single-wall carbon nanotubes-polythiophene hybrid materials [J].
Pokrop, Rafal ;
Kulszewicz-Bajer, Irena ;
Wielgus, Ireneusz ;
Zagorska, Malgorzata ;
Albertini, David ;
Lefrant, Serge ;
Louarn, Guy ;
Pron, Adam .
SYNTHETIC METALS, 2009, 159 (9-10) :919-924
[29]   Diffusion Limited Photoluminescence Quantum Yields in 1-D Semiconductors: Single-Wall Carbon Nanotubes [J].
Hertel, Tobias ;
Himmelein, Sabine ;
Ackermann, Thomas ;
Stich, Dominik ;
Crochet, Jared .
ACS NANO, 2010, 4 (12) :7161-7168
[30]   Raman spectroscopy of covalently functionalized single-wall carbon nanotubes [J].
Graupner, R. .
JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (06) :673-683