NA(L(nl1 : l1))=NRA(L(nl1:l1))

被引:3
作者
Kim, Sung Guen [1 ]
机构
[1] Kyungpook Natl Univ, Dept Math, Daegu 702701, South Korea
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2022年 / 88卷 / 3-4期
关键词
norm attaining multilinear mappings; numerical radius attaining multilinear mappings; NORM; POLYNOMIALS;
D O I
10.1007/s44146-022-00048-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n >= 2 and L(E-n : E) denote the space of all continuous n-linear mappings from a Banach space E to itself. Let NA(L(E-n : E)) denote the set of all norm attaining n-linear mappings in (E-n : E) and NRA(L(E-n : E)) denote the set of all numerical radius attaining n-linear mappings in L(E-n : E). In this paper we show that NA(L(E-n : E))=NRA(L(E-n : E)) if E = l(1). We also characterize NA(L((n)l(1) : l(1))).
引用
收藏
页码:769 / 775
页数:7
相关论文
共 12 条
  • [1] ARON RM, 1995, LECT NOTES PURE APPL, V172, P19
  • [2] A PROOF THAT EVERY BANACH SPACE IS SUBREFLEXIVE
    BISHOP, E
    PHELPS, RR
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (01) : 97 - &
  • [3] Norm or numerical radius attaining polynomials on C(K)
    Choi, YS
    Garcia, D
    Kim, SG
    Maestre, M
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) : 80 - 96
  • [4] Norm or numerical radius attaining multilinear mappings and polynomials
    Choi, YS
    Kim, SG
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 135 - 147
  • [5] Dineen S., 1999, COMPLEX ANAL INFINIT, DOI DOI 10.1007/978-1-4471-0869-6
  • [6] Kim, 2022, NZ J MATH, V53
  • [7] Kim S. G., 2020, Comment. Math., V60, P37, DOI [10.14708/cm.v60i1-2.70715, DOI 10.14708/CM.V60I1-2.70715]
  • [8] Kim S. G., 2021, New Zealand J. Math., V51, P95, DOI [10.53730/177, DOI 10.53730/177]
  • [9] Kim S. G., 2021, Mat. Stud., V55, P171, DOI [10.30970/ms.55.2.171-180, DOI 10.30970/MS.55.2.171-180]
  • [10] Kim S.K., PREPRINT