Optimising an artificial neural network for predicting the melting point of ionic liquids

被引:79
|
作者
Torrecilla, Jose S. [1 ]
Rodriguez, Francisco [1 ]
Bravo, Jose L. [2 ]
Rothenberg, Gadi [3 ]
Seddon, Kenneth R. [4 ]
Lopez-Martin, Ignacio [4 ]
机构
[1] Univ Complutense Madrid, Fac Chem, Dept Chem Engn, E-28040 Madrid, Spain
[2] Univ Extremadura, Dept Quim Organ & Inorgan, E-06071 Badajoz, Spain
[3] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1018 WV Amsterdam, Netherlands
[4] Queens Univ Belfast, Sch Chem & Chem Engn, QUILL Res Ctr, Belfast BT9 5AG, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1039/b806367b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present an optimised artificial neural network ( ANN) model for predicting the melting point of a group of 97 imidazolium salts with varied anions. Each cation and anion in the model is described using molecular descriptors. Our model has a mean prediction error of 1.30%, a regression coefficient of 0.99 and a mean P-value of 0.92. The ANN's prediction performance depends mainly on the anion size. In particular, the prediction error decreases as the anion size increases. The high statistical relevance makes this model a useful tool for predicting the melting points of imidazolium-based ionic liquids.
引用
收藏
页码:5826 / 5831
页数:6
相关论文
共 50 条
  • [41] Group Contribution Method for Predicting Melting Points of Imidazolium and Benzimidazolium Ionic Liquids
    Huo, Yan
    Xia, Shuqian
    Zhang, Yan
    Ma, Peisheng
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (04) : 2212 - 2217
  • [42] Artificial neural network as an applicable tool to predict the binary heat capacity of mixtures containing ionic liquids
    Lashkarbolooki, Mostafa
    Hezave, Ali Zeinolabedini
    Ayatollahi, Shahab
    FLUID PHASE EQUILIBRIA, 2012, 324 : 102 - 107
  • [43] Artificial Neural Network modeling of solubility of supercritical carbon dioxide in 24 commonly used ionic liquids
    Eslamimanesh, Ali
    Gharagheizi, Farhad
    Mohammadi, Amir H.
    Richon, Dominique
    CHEMICAL ENGINEERING SCIENCE, 2011, 66 (13) : 3039 - 3044
  • [44] Artificial neural network model for controlling of cupola melting
    Yao, Ruibo
    Tang, Chongxi
    Sun, Guoxiong
    Zhuzao/Foundry, 1997, (02): : 14 - 17
  • [45] Influence of thermodynamically inconsistent data on modeling the solubilities of refrigerants in ionic liquids using an artificial neural network
    Fierro, Elias N.
    Faundez, Claudio A.
    Munoz, Ariana S.
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 337
  • [46] Estimation of viscosities of pure ionic liquids using an artificial neural network based on only structural characteristics
    Fatehi, Mohammad-Reza
    Raeissi, Sona
    Mowla, Dariush
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 227 : 309 - 317
  • [47] Predicting the ages of galaxies with an artificial neural network
    Hunt, Laura J.
    Pimbblet, Kevin A.
    Benoit, David M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 529 (01) : 479 - 498
  • [48] Application of artificial neural network in predicting EI
    Allahyari, Elahe
    BIOMEDICINE-TAIWAN, 2020, 10 (03): : 18 - 24
  • [49] Predicting CHF using artificial neural network
    Xiao, G
    Su, GH
    Liu, RL
    Jia, DN
    MULTIPHASE FLOW AND HEAT TRANSFER, 1999, : 125 - 129
  • [50] Artificial neural network for predicting creep of concrete
    Lyes Bal
    François Buyle-Bodin
    Neural Computing and Applications, 2014, 25 : 1359 - 1367