Optimising an artificial neural network for predicting the melting point of ionic liquids

被引:79
|
作者
Torrecilla, Jose S. [1 ]
Rodriguez, Francisco [1 ]
Bravo, Jose L. [2 ]
Rothenberg, Gadi [3 ]
Seddon, Kenneth R. [4 ]
Lopez-Martin, Ignacio [4 ]
机构
[1] Univ Complutense Madrid, Fac Chem, Dept Chem Engn, E-28040 Madrid, Spain
[2] Univ Extremadura, Dept Quim Organ & Inorgan, E-06071 Badajoz, Spain
[3] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1018 WV Amsterdam, Netherlands
[4] Queens Univ Belfast, Sch Chem & Chem Engn, QUILL Res Ctr, Belfast BT9 5AG, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1039/b806367b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present an optimised artificial neural network ( ANN) model for predicting the melting point of a group of 97 imidazolium salts with varied anions. Each cation and anion in the model is described using molecular descriptors. Our model has a mean prediction error of 1.30%, a regression coefficient of 0.99 and a mean P-value of 0.92. The ANN's prediction performance depends mainly on the anion size. In particular, the prediction error decreases as the anion size increases. The high statistical relevance makes this model a useful tool for predicting the melting points of imidazolium-based ionic liquids.
引用
收藏
页码:5826 / 5831
页数:6
相关论文
共 50 条
  • [31] QSPR correlation of the melting point for pyridinium bromides, potential ionic liquids
    Katritzky, AR
    Lomaka, A
    Petrukhin, R
    Jain, R
    Karelson, M
    Visser, AE
    Rogers, RD
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (01): : 71 - 74
  • [32] Melting point depression of ionic liquids by their confinement in carbons of controlled mesoporosity
    Beguin, Francois
    Pavlenko, Vladimir
    Przygocki, Patryk
    Pawlyta, Miroslawa
    Ratajczak, Paula
    CARBON, 2020, 169 : 501 - 511
  • [33] Origin of low melting point of ionic liquids: dominant role of entropy
    Endo, Takatsugu
    Sunada, Kouki
    Sumida, Hiroki
    Kimura, Yoshifumi
    CHEMICAL SCIENCE, 2022, 13 (25) : 7560 - 7565
  • [34] Melting-Point Estimation of Ionic Liquids by a Group Contribution Method
    Aguirre, Claudia L.
    Cisternas, Luis A.
    Valderrama, Jose O.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2012, 33 (01) : 34 - 46
  • [35] Ionic liquids: Prediction of melting point by molecular-based model
    Farahani, Nasrin
    Gharagheizi, Farhad
    Mirkhani, Seyyed Alireza
    Tumba, Kaniki
    THERMOCHIMICA ACTA, 2012, 549 : 17 - 34
  • [36] A Group Contribution Method for Predicting the Freezing Point of Ionic Liquids
    Lazzus, Juan A.
    PERIODICA POLYTECHNICA-CHEMICAL ENGINEERING, 2016, 60 (04) : 273 - 281
  • [37] Melting-Point Estimation of Ionic Liquids by a Group Contribution Method
    Claudia L. Aguirre
    Luis A. Cisternas
    José O. Valderrama
    International Journal of Thermophysics, 2012, 33 : 34 - 46
  • [38] Predicting and optimising the surface roughness of additive manufactured parts using an artificial neural network model and genetic algorithm
    Ulkir, Osman
    Akgun, Gazi
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2023, 28 (07) : 548 - 557
  • [39] Artificial neural network prediction of the band gap and melting point of binary and ternary compound semiconductors
    Zhang, ZC
    Peng, RW
    Chen, NY
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1998, 54 (03): : 149 - 152
  • [40] A density functional theory based approach for predicting melting points of ionic liquids
    Chen, Lihua
    Bryantsev, Vyacheslav S.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (05) : 4114 - 4124