Optimising an artificial neural network for predicting the melting point of ionic liquids

被引:79
|
作者
Torrecilla, Jose S. [1 ]
Rodriguez, Francisco [1 ]
Bravo, Jose L. [2 ]
Rothenberg, Gadi [3 ]
Seddon, Kenneth R. [4 ]
Lopez-Martin, Ignacio [4 ]
机构
[1] Univ Complutense Madrid, Fac Chem, Dept Chem Engn, E-28040 Madrid, Spain
[2] Univ Extremadura, Dept Quim Organ & Inorgan, E-06071 Badajoz, Spain
[3] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1018 WV Amsterdam, Netherlands
[4] Queens Univ Belfast, Sch Chem & Chem Engn, QUILL Res Ctr, Belfast BT9 5AG, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1039/b806367b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present an optimised artificial neural network ( ANN) model for predicting the melting point of a group of 97 imidazolium salts with varied anions. Each cation and anion in the model is described using molecular descriptors. Our model has a mean prediction error of 1.30%, a regression coefficient of 0.99 and a mean P-value of 0.92. The ANN's prediction performance depends mainly on the anion size. In particular, the prediction error decreases as the anion size increases. The high statistical relevance makes this model a useful tool for predicting the melting points of imidazolium-based ionic liquids.
引用
收藏
页码:5826 / 5831
页数:6
相关论文
共 50 条
  • [21] Predicting Force in Single Point Incremental Forming by Using Artificial Neural Network
    Oraon, M.
    Sharma, V.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2018, 31 (01): : 88 - 95
  • [22] QSPR Models Based on Multiple Linear Regression and Back-Propagation Artificial Neural Network for Predicting Electrical Conductivity of Ionic Liquids
    Shi, Zhaochong
    Song, Fan
    Ji, Changzheng
    Xiao, Yongjun
    Peng, Changjun
    Liu, Honglai
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (10) : 4571 - 4584
  • [23] Conductivity of Ionic Liquids: A Neural Network Approach
    Diaz-Rodriguez, Pablo
    Cancilla, John
    Matute, Gemma
    Torrecilla, Jose S.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (01) : 55 - 58
  • [24] Predicting spikes with artificial neural network
    Lihong Cao
    Jiamin Shen
    Lei Wang
    Ye Wang
    Science China Information Sciences, 2018, 61
  • [25] Predicting spikes with artificial neural network
    Cao, Lihong
    Shen, Jiamin
    Wang, Lei
    Wang, Ye
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (06)
  • [26] Predicting spikes with artificial neural network
    Lihong CAO
    Jiamin SHEN
    Lei WANG
    Ye WANG
    ScienceChina(InformationSciences), 2018, 61 (06) : 170 - 172
  • [27] Predicting the Future with Artificial Neural Network
    Olawoyin, Anifat
    Chen, Yangjuin
    CYBER PHYSICAL SYSTEMS AND DEEP LEARNING, 2018, 140 : 383 - 392
  • [28] PERCEPTRON ARTIFICIAL NEURAL NETWORK AND PREDICTION OF BUBBLE POINTS OF TERNARY MIXTURES CONTAINING IONIC LIQUIDS
    Hezave, Ali Zeinolabedini
    Lashkarbolooki, Mostafa
    Raeissi, Sona
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2013, 12 (06):
  • [29] Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network
    Nami, Faezeh
    Deyhimi, Farzad
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2011, 43 (01): : 22 - 27
  • [30] Ionic Liquids Based on the Concept of Melting Point Lowering Due to Ethoxylation
    Rothe, Manuel
    Mueller, Eva
    Denk, Patrick
    Kunz, Werner
    MOLECULES, 2021, 26 (13):