Optimising an artificial neural network for predicting the melting point of ionic liquids

被引:79
|
作者
Torrecilla, Jose S. [1 ]
Rodriguez, Francisco [1 ]
Bravo, Jose L. [2 ]
Rothenberg, Gadi [3 ]
Seddon, Kenneth R. [4 ]
Lopez-Martin, Ignacio [4 ]
机构
[1] Univ Complutense Madrid, Fac Chem, Dept Chem Engn, E-28040 Madrid, Spain
[2] Univ Extremadura, Dept Quim Organ & Inorgan, E-06071 Badajoz, Spain
[3] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1018 WV Amsterdam, Netherlands
[4] Queens Univ Belfast, Sch Chem & Chem Engn, QUILL Res Ctr, Belfast BT9 5AG, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1039/b806367b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present an optimised artificial neural network ( ANN) model for predicting the melting point of a group of 97 imidazolium salts with varied anions. Each cation and anion in the model is described using molecular descriptors. Our model has a mean prediction error of 1.30%, a regression coefficient of 0.99 and a mean P-value of 0.92. The ANN's prediction performance depends mainly on the anion size. In particular, the prediction error decreases as the anion size increases. The high statistical relevance makes this model a useful tool for predicting the melting points of imidazolium-based ionic liquids.
引用
收藏
页码:5826 / 5831
页数:6
相关论文
共 50 条
  • [1] A novel method for predicting melting point of ionic liquids
    Keshavarz, Mohammad Hossein
    Pouretedal, Hamid Reza
    Saberi, Ehsan
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2018, 116 : 333 - 339
  • [2] Artificial Neural Networks and the Melting Temperature of Ionic Liquids
    Vaderrama, Jose O.
    Faundez, Claudio A.
    Vicencio, Vilma J.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (25) : 10504 - 10511
  • [3] Predicting the melting temperature and the heat of melting of ionic liquids
    Valderrama J.O.
    Cardona L.F.
    Journal of Ionic Liquids, 2021, 1 (01):
  • [4] Ionic liquids: prediction of their melting points by a recursive neural network model
    Bini, Riccardo
    Chiappe, Cinzia
    Duce, Celia
    Micheli, Alessio
    Solaro, Roberto
    Starita, Antonina
    Tine, Maria Rosaria
    GREEN CHEMISTRY, 2008, 10 (03) : 306 - 309
  • [5] Prediction of melting point of organic compounds by artificial neural network
    Zhang, Weitao
    Yu, Yanwu
    Wang, Jianhua
    ADVANCES IN ENERGY SCIENCE AND EQUIPMENT ENGINEERING, 2015, : 2667 - 2670
  • [6] Predicting melting points of quaternary ammonium ionic liquids
    Eike, DM
    Brennecke, JF
    Maginn, EJ
    GREEN CHEMISTRY, 2003, 5 (03) : 323 - 328
  • [7] Predicting melting point of ionic liquids using QSPR approach: Literature review and new models
    Paduszynski, Kamil
    Klebowski, Krzysztof
    Krolikowska, Marta
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 344
  • [8] Melting point depression of ionic liquids confined in nanospaces
    Kanakubo, M
    Hiejima, Y
    Minami, K
    Aizawa, T
    Nanjo, H
    CHEMICAL COMMUNICATIONS, 2006, (17) : 1828 - 1830
  • [9] Tetraalkylammonium Chlorides as Melting Point Depressants of Ionic Liquids
    Martins, Monia A. R.
    Abranches, Dinis O.
    Silva, Liliana P.
    Pinho, Simao P.
    Coutinho, Joao A. P.
    JOURNAL OF SOLUTION CHEMISTRY, 2024, 53 (04) : 538 - 551
  • [10] Tetraalkylammonium Chlorides as Melting Point Depressants of Ionic Liquids
    Mónia A. R. Martins
    Dinis O. Abranches
    Liliana P. Silva
    Simão P. Pinho
    João A. P. Coutinho
    Journal of Solution Chemistry, 2024, 53 : 538 - 551