共 50 条
Ontological Differences in First Compared to Third Trimester Human Fetal Placental Chorionic Stem Cells
被引:47
|作者:
Jones, Gemma N.
[1
]
Moschidou, Dafni
[1
]
Puga-Iglesias, Tamara-Isabel
[1
]
Kuleszewicz, Katarzyna
[1
]
Vanleene, Maximilien
[2
]
Shefelbine, Sandra J.
[2
]
Bou-Gharios, George
[3
]
Fisk, Nicholas M.
[4
]
David, Anna L.
[5
]
De Coppi, Paolo
[6
]
Guillot, Pascale V.
[1
]
机构:
[1] Univ London Imperial Coll Sci Technol & Med, Inst Reprod & Dev Biol, London, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Bioengn, London, England
[3] Univ Oxford, Kennedy Inst Rheumatol, London, England
[4] Univ Queensland, UQ Ctr Clin Res, Brisbane, Qld, Australia
[5] UCL, Prenatal Cell & Gene Therapy Grp, Inst Womens Hlth, London, England
[6] UCL Inst Child Hlth, Surg Unit, London, England
来源:
PLOS ONE
|
2012年
/
7卷
/
09期
基金:
英国医学研究理事会;
关键词:
PRIMORDIAL GERM-CELLS;
MESENCHYMAL STROMAL CELLS;
PROGENITOR CELLS;
AMNIOTIC-FLUID;
CORD BLOOD;
PLX-PAD;
C-KIT;
BONE;
MOUSE;
EXPRESSION;
D O I:
10.1371/journal.pone.0043395
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Human mesenchymal stromal/stem cells (MSC) isolated from fetal tissues hold promise for use in tissue engineering applications and cell-based therapies, but their collection is restricted ethically and technically. In contrast, the placenta is a potential source of readily-obtainable stem cells throughout pregnancy. In fetal tissues, early gestational stem cells are known to have advantageous characteristics over neonatal and adult stem cells. Accordingly, we investigated whether early fetal placental chorionic stem cells (e-CSC) were physiologically superior to their late gestation fetal chorionic counterparts (l-CSC). We showed that e-CSC shared a common phenotype with l-CSC, differentiating down the osteogenic, adipogenic and neurogenic pathways, and containing a subset of cells endogenously expressing NANOG, SOX2, c-MYC, and KLF4, as well as an array of genes expressed in pluripotent stem cells and primordial germ cells, including CD24, NANOG, SSEA4, SSEA3, TRA-1-60, TRA-1-81, STELLA, FRAGILIS, NANOS3, DAZL and SSEA1. However, we showed that e-CSC have characteristics of an earlier state of stemness compared to l-CSC, such as smaller size, faster kinetics, uniquely expressing OCT4A variant 1 and showing higher levels of expression of NANOG, SOX2, c-MYC and KLF4 than l-CSC. Furthermore e-CSC, but not l-CSC, formed embryoid bodies containing cells from the three germ layer lineages. Finally, we showed that e-CSC demonstrate higher tissue repair in vivo; when transplanted in the osteogenesis imperfecta mice, e-CSC, but not l-CSC increased bone quality and plasticity; and when applied to a skin wound, e-CSC, but not l-CSC, accelerated healing compared to controls. Our results provide insight into the ontogeny of the stemness phenotype during fetal development and suggest that the more primitive characteristics of early compared to late gestation fetal chorionic stem cells may be translationally advantageous.
引用
收藏
页数:15
相关论文