机构:
Univ Castilla La Mancha, Fac Med, Camino Moledores S-N, Ciudad Real 13071, SpainUniv Castilla La Mancha, Fac Med, Camino Moledores S-N, Ciudad Real 13071, Spain
Amo-Salas, Mariano
[1
]
Jimenez-Alcazar, Alfonso
论文数: 0引用数: 0
h-index: 0
机构:
Univ Castilla La Mancha, Inst Environm Sci, Avda Carlos III S-N, Toledo 45071, SpainUniv Castilla La Mancha, Fac Med, Camino Moledores S-N, Ciudad Real 13071, Spain
Jimenez-Alcazar, Alfonso
[2
]
Lopez-Fidalgo, Jesus
论文数: 0引用数: 0
h-index: 0
机构:
Univ Castilla La Mancha, Higher Tech Sch Ind Engn, Avda Camilo Jose Cela 3, Ciudad Real 13071, SpainUniv Castilla La Mancha, Fac Med, Camino Moledores S-N, Ciudad Real 13071, Spain
Lopez-Fidalgo, Jesus
[3
]
机构:
[1] Univ Castilla La Mancha, Fac Med, Camino Moledores S-N, Ciudad Real 13071, Spain
[2] Univ Castilla La Mancha, Inst Environm Sci, Avda Carlos III S-N, Toledo 45071, Spain
[3] Univ Castilla La Mancha, Higher Tech Sch Ind Engn, Avda Camilo Jose Cela 3, Ciudad Real 13071, Spain
In this paper the tools provided by the theory of the optimal design of experiments are applied to a model where the function is given in implicit form. This work is motivated by a dosimetry problem, where the dose, the controllable variable, is expressed as a function of the observed value from the experiment. The best doses will be computed in order to obtain precise estimators of the parameters of the model. For that, the inverse function theorem will be used to obtain the Fisher information matrix. Properly the D-optimal design must be obtained directly on the dose using the inverse function theorem. Alternatively a fictitious D-optimal design on the observed values can be obtained in the usual way. Then this design can be transformed through the model into a design on the doses. Both designs will be computed and compared for a real example. Moreover, different optimal sequences and their D-effiencies will be computed as well. Finally, c-optimal designs for the parameters of the model will be provided.
机构:
Guangzhou Univ, Dept Probabil & Stat, Guangzhou 510006, Guangdong, Peoples R ChinaGuangzhou Univ, Dept Probabil & Stat, Guangzhou 510006, Guangdong, Peoples R China
Zhang, Chongqi
Wong, Weng Kee
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Biostat, Fielding Sch Publ Hlth, Los Angeles, CA 90095 USAGuangzhou Univ, Dept Probabil & Stat, Guangzhou 510006, Guangdong, Peoples R China