Deep-Ultraviolet Resonance Raman Excitation Profiles of NH4NO3, PETN, TNT, HMX, and RDX

被引:48
作者
Ghosh, Manash [1 ]
Wang, Luling [1 ]
Asher, Sanford A. [1 ]
机构
[1] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
关键词
Explosives; Resonance Raman; Raman excitation profile; Energetic materials; Raman cross-section; ALIPHATIC UNCONJUGATED NITRAMINES; CROSS-SECTIONS; SATURATION SPECTROSCOPY; VIBRATIONAL-SPECTRA; STANDOFF DETECTION; SINGLE-CRYSTALS; HIGH-PRESSURE; GATED RAMAN; EXPLOSIVES; STATE;
D O I
10.1366/12-06626
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We measured the dispersion of the absolute-differential Raman cross-sections of ammonium nitrate (NH4NO3), pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), nitroamine (HIX), and cyclotrimethylene-trinitramine (RDX) in acelonitrile and water solutions between 204 and 257 nm. The ultraviolet (UV) resonance Raman/differential Raman cross-sections of NH4NO3, PETN, TNT, HMX, and RDX dramatically increase as the excitation wavelength decreases deep into the UV to 204 nm. NH4NO3, PETN, and RDX are best resonance-enhanced by the 204 nm excitation used here, while the optimum excitation wavelength for TNT and HMX is similar to 230 nm. The excitation profile of TNT roughly follows its absorption band shape. The excitation profiles for the different Raman bands of each explosive molecule differ, indicating that multiple-excitation wavelength spectra are not redundant and can offer additional information on the species present. We see no evidence of any nonlinear spectral response or sample degradation at Ihe fluences and spectral accumulation times used here. However, we previously observed such phenomena at longer spectral accumulation times and higher thiences. These results are promising for the development of standoff deep-UV Raman methods for explosive molecule determinations.
引用
收藏
页码:1013 / 1021
页数:9
相关论文
共 57 条
[1]   DEPENDENCE OF VIBRATIONAL RAMAN INTENSITY ON WAVELENGTH OF INCIDENT LIGHT [J].
ALBRECHT, AC ;
HUTLEY, MC .
JOURNAL OF CHEMICAL PHYSICS, 1971, 55 (09) :4438-&
[2]  
Asher S.A., 2001, HDB VIBRATIONAL SPEC, V1, P557
[3]  
ASHER SA, 1984, SCIENCE, V225, P311, DOI 10.1126/science.6740313
[4]   UV RESONANCE RAMAN-SPECTROSCOPY FOR ANALYTICAL, PHYSICAL, AND BIOPHYSICAL CHEMISTRY .2. [J].
ASHER, SA .
ANALYTICAL CHEMISTRY, 1993, 65 (04) :A201-A210
[6]  
ASHER SA, 1988, ANNU REV PHYS CHEM, V39, P537
[7]   UV RESONANCE RAMAN-SPECTROSCOPY USING A NEW CW LASER SOURCE - CONVENIENCE AND EXPERIMENTAL SIMPLICITY [J].
ASHER, SA ;
BORMETT, RW ;
CHEN, XG ;
LEMMON, DH ;
CHO, N ;
PETERSON, P ;
ARRIGONI, M ;
SPINELLI, L ;
CANNON, J .
APPLIED SPECTROSCOPY, 1993, 47 (05) :628-633
[8]   Solid State and Solution Nitrate Photochemistry: Photochemical Evolution of the Solid State Lattice [J].
Asher, Sanford A. ;
Tuschel, David D. ;
Vargson, Todd A. ;
Wang, Luling ;
Geib, Steven J. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (17) :4279-4287
[9]   Theoretical and experimental study of the vibrational spectra of the α, β, and δ phases of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) [J].
Brand, HV ;
Rabie, RL ;
Funk, DJ ;
Diaz-Acosta, I ;
Pulay, P ;
Lippert, TK .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (41) :10594-10604
[10]   Steady-state and transient ultraviolet resonance Raman spectrometer for the 193-270 nm spectral region [J].
Bykov, S ;
Lednev, I ;
Ianoul, A ;
Mikhonin, A ;
Munro, C ;
Asher, SA .
APPLIED SPECTROSCOPY, 2005, 59 (12) :1541-1552