Three-dimensional modelling of wave-induced current from the surf zone to the inner shelf

被引:47
|
作者
Michaud, H. [1 ,2 ]
Marsaleix, P. [2 ]
Leredde, Y. [1 ]
Estournel, C. [2 ]
Bourrin, F. [3 ]
Lyard, F. [4 ]
Mayet, C. [4 ]
Ardhuin, F. [5 ]
机构
[1] Univ Montpellier 2 Sci & Tech, CNRS, Geosci Montpellier, UMR5243, F-34095 Montpellier 5, France
[2] Univ Toulouse, CNRS, Lab Aerol, UMR5560, F-31400 Toulouse, France
[3] Univ Perpignan, CNRS, Ctr Format & Rech Environm Marin, UMR5110, F-66860 Perpignan, France
[4] CNRS CNES IRD UPS, Lab Etud Geophys & Oceanog Spatiales, F-31400 Toulouse, France
[5] IFREMER, Ctr Brest, Lab Oceanog Spatiale, F-29280 Plouzane, France
关键词
TURBULENCE CLOSURE MODELS; RIP CURRENTS; OCEANIC CIRCULATION; SEDIMENT TRANSPORT; MEDITERRANEAN SEA; RADIATION STRESS; BOUNDARY-LAYER; GRAVITY-WAVES; FINITE DEPTH; STORM EVENTS;
D O I
10.5194/os-8-657-2012
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We develop and implement a new method to take into account the impact of waves into the 3-D circulation model SYMPHONIE (Marsaleix et al., 2008, 2009a) following the simplified equations of Bennis et al. (2011), which use glm2z-RANS theory (Ardhuin et al., 2008c). These adiabatic equations are completed by additional parameterizations of wave breaking, bottom friction and wave-enhanced vertical mixing, making the forcing valid from the surf zone through to the open ocean. The wave forcing is performed by wave generation and propagation models WAVEWATCH III (R) (Tolman, 2008, 2009; Ardhuin et al., 2010) and SWAN (Booij et al., 1999). The model is tested and compared with other models for a plane beach test case, previously tested by Haas and Warner (2009) and Uchiyama et al. (2010). A comparison is also made with the laboratory measurements of Haller et al. (2002) of a barred beach with channels. Results fit with previous simulations performed by other models and with available observational data. Finally, a realistic case is simulated with energetic waves travelling over a coast of the Gulf of Lion (in the northwest of the Mediterranean Sea) for which currents are available at different depths as well as an accurate bathymetric database of the 0-10 m depth range. A grid nesting approach is used to account for the different forcings acting at different spatial scales. The simulation coupling the effects of waves and currents is successful to reproduce the powerful northward littoral drift in the 0-15 m depth zone. More precisely, two distinct cases are identified: When waves have a normal angle of incidence with the coast, they are responsible for complex circulation cells and rip currents in the surf zone, and when they travel obliquely, they generate a northward littoral drift. These features are more complicated than in the test cases, due to the complex bathymetry and the consideration of wind and non-stationary processes. Wave impacts in the inner shelf are less visible since wind and regional circulation seem to be the predominant forcings. Besides, a discrepancy between model and observations is noted at that scale, possibly linked to an underestimation of the wind stress. This three-dimensional method allows a good representation of vertical current profiles and permits the calculation of the shear stress associated with waves and currents. Future work will focus on the combination with a sediment transport model.
引用
收藏
页码:657 / 681
页数:25
相关论文
共 50 条
  • [1] One-dimensional modelling of individual waves and wave-induced longshore currents in the surf zone
    vanRijn, LC
    Wijnberg, KM
    COASTAL ENGINEERING, 1996, 28 (1-4) : 121 - 145
  • [2] The Three-Dimensional Wave-Induced Current Field: An Analytical Model
    Gic-Grusza, Gabriela
    WATER, 2024, 16 (08)
  • [3] Wave-Induced Distribution of Microplastic in the Surf Zone
    Kerpen, Nils B.
    Schlurmann, Torsten
    Schendel, Alexander
    Gundlach, Jannek
    Marquard, Daniel
    Huepgen, Markus
    FRONTIERS IN MARINE SCIENCE, 2020, 7
  • [4] WAVE-INDUCED LONGSHORE CURRENTS IN SURF ZONE
    YOO, DH
    JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE, 1994, 120 (06): : 557 - 575
  • [5] Three-dimensional wave-induced current model equations and radiation stresses
    Hua-yong Xia
    China Ocean Engineering, 2017, 31 : 418 - 427
  • [6] Three-dimensional wave-induced current model equations and radiation stresses
    Xia Hua-yong
    CHINA OCEAN ENGINEERING, 2017, 31 (04) : 418 - 427
  • [7] Three-Dimensional Wave-Induced Current Model Equations and Radiation Stresses
    XIA Hua-yong
    China Ocean Engineering, 2017, 31 (04) : 418 - 427
  • [8] A quasi-3D model of wave-induced current in the surf zone
    Kuroiwa, M
    Noda, H
    Matsubara, Y
    ENVIRONMENTAL AND COASTAL HYDRAULICS: PROTECTING THE AQUATIC HABITAT, PROCEEDINGS OF THEME B, VOLS 1 & 2, 1997, 27 : 647 - 652
  • [9] Impacts of wave-induced circulation in the surf zone on wave setup
    Guerin, Thomas
    Bertin, Xavier
    Coulombier, Thibault
    de Bakker, Anouk
    OCEAN MODELLING, 2018, 123 : 86 - 97
  • [10] Modelling of periodic wave transformation in the inner surf zone
    Bonneton, P.
    OCEAN ENGINEERING, 2007, 34 (10) : 1459 - 1471