Spatio-temporal information for human action recognition

被引:18
|
作者
Yao, Li [1 ,2 ]
Liu, Yunjian [3 ]
Huang, Shihui [3 ]
机构
[1] Southeast Univ, Minist Educ, Key Lab Comp Network & Informat Integrat, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
[3] Southeast Univ, Comp Sci & Engn Coll, Dongnandaxue Rd 2, Nanjing, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Spatio-temporal; Video representation; Multi-feature fusion; Human action recognition; REPRESENTATION; CONTEXT;
D O I
10.1186/s13640-016-0145-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Human activity recognition in videos is important for content-based videos indexing, intelligent monitoring, human-machine interaction, and virtual reality. This paper uses the low-level feature-based framework for human activity recognition which includes feature extraction and descriptor computing, early multi-feature fusion, video representation, and classification. This paper improves the first two steps. We propose a spatio-temporal bigraph-based multi-feature fusion algorithm to capture the useful visual information for recognition. Meanwhile, we introduce a compressed spatio-temporal video representation to bag of words representation. Our experiments on two popular datasets show efficient performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition
    Ma, Andy J.
    Yuen, Pong C.
    Zou, Wilman W. W.
    Lai, Jian-Huang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2013, 23 (08) : 1447 - 1460
  • [42] Human Action Recognition Using LBP-TOP as Sparse Spatio-Temporal Feature Descriptor
    Mattivi, Riccardo
    Shao, Ling
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2009, 5702 : 740 - 747
  • [43] MAFormer: A cross-channel spatio-temporal feature aggregation method for human action recognition
    Huang, Hongbo
    Xu, Longfei
    Zheng, Yaolin
    Yan, Xiaoxu
    AI COMMUNICATIONS, 2024, 37 (04) : 735 - 749
  • [44] A new framework of action recognition with discriminative parts, spatio-temporal and causal interaction descriptors
    Tong, Ming
    Chen, Yiran
    Zhao, Mengao
    Tian, Weijuan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 56 : 116 - 130
  • [45] Human Action Recognition via Spatio-temporal Dual Network Flow and Visual Attention Fusion
    Liu Tianliang
    Qiao Qingwei
    Wan Junwei
    Dai Xiubin
    Luo Jiebo
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (10) : 2395 - 2401
  • [46] Spatio-Temporal Self-Attention Weighted VLAD Neural Network for Action Recognition
    Cheng, Shilei
    Xie, Mei
    Ma, Zheng
    Li, Siqi
    Gu, Song
    Yang, Feng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (01) : 220 - 224
  • [47] PROGRESSIVE SPATIO-TEMPORAL GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED HUMAN ACTION RECOGNITION
    Heidari, Negar
    Iosifidis, Alexandros
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3220 - 3224
  • [48] Action recognition in realistic scenes via local spatio-temporal representation
    Lei, Qing
    Li, Shaozi
    Zhang, Hongbo
    Journal of Information and Computational Science, 2014, 11 (01): : 275 - 286
  • [49] Action Recognition Based on Histogram of Spatio-Temporal Oriented Principal Components
    Xu Haiyang
    Kong Jun
    Jiang Min
    Zan Baofeng
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (06)
  • [50] Spatio-Temporal Pyramid Model Based on Depth Maps for Action Recognition
    Xu, Haining
    Chen, Enqing
    Liang, Chengwu
    Qi, Lin
    Guan, Ling
    2015 IEEE 17TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2015,