Spatio-temporal information for human action recognition

被引:18
|
作者
Yao, Li [1 ,2 ]
Liu, Yunjian [3 ]
Huang, Shihui [3 ]
机构
[1] Southeast Univ, Minist Educ, Key Lab Comp Network & Informat Integrat, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
[3] Southeast Univ, Comp Sci & Engn Coll, Dongnandaxue Rd 2, Nanjing, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Spatio-temporal; Video representation; Multi-feature fusion; Human action recognition; REPRESENTATION; CONTEXT;
D O I
10.1186/s13640-016-0145-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Human activity recognition in videos is important for content-based videos indexing, intelligent monitoring, human-machine interaction, and virtual reality. This paper uses the low-level feature-based framework for human activity recognition which includes feature extraction and descriptor computing, early multi-feature fusion, video representation, and classification. This paper improves the first two steps. We propose a spatio-temporal bigraph-based multi-feature fusion algorithm to capture the useful visual information for recognition. Meanwhile, we introduce a compressed spatio-temporal video representation to bag of words representation. Our experiments on two popular datasets show efficient performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Spatio-temporal feature extraction and representation for RGB-D human action recognition
    Luo, Jiajia
    Wang, Wei
    Qi, Hairong
    PATTERN RECOGNITION LETTERS, 2014, 50 : 139 - 148
  • [32] LEARNED SPATIO-TEMPORAL TEXTURE DESCRIPTORS FOR RGB-D HUMAN ACTION RECOGNITION
    Zhai, Zhengyuan
    Fan, Chunxiao
    Ming, Yue
    COMPUTING AND INFORMATICS, 2018, 37 (06) : 1339 - 1362
  • [33] An End to End Framework With Adaptive Spatio-Temporal Attention Module for Human Action Recognition
    Liu, Shaocan
    Ma, Xin
    Wu, Hanbo
    Li, Yibin
    IEEE ACCESS, 2020, 8 : 47220 - 47231
  • [34] Human Action Recognition Based on Selected Spatio-Temporal Features via Bidirectional LSTM
    Li, Wenhui
    Nie, Weizhi
    Su, Yuting
    IEEE ACCESS, 2018, 6 : 44211 - 44220
  • [35] A comprehensive survey of human action recognition with spatio-temporal interest point (STIP) detector
    Debapratim Das Dawn
    Soharab Hossain Shaikh
    The Visual Computer, 2016, 32 : 289 - 306
  • [36] VLAD-SSTA: VLAD WITH SOFT SPATIO-TEMPORAL ASSIGNMENT FOR ACTION RECOGNITION
    Cheng, Shilei
    Qin, Guoyi
    Li, Siqi
    Xie, Mei
    Ma, Zheng
    2019 16TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICWAMTIP), 2019, : 217 - 221
  • [37] Silhouette analysis for human action recognition based on maximum spatio-temporal dissimilarity embedding
    Cheng, Jian
    Liu, Haijun
    Li, Hongsheng
    MACHINE VISION AND APPLICATIONS, 2014, 25 (04) : 1007 - 1018
  • [38] Combining Handcrafted Spatio-Temporal and Deep Spatial Features for Effective Human Action Recognition
    R. Divya Rani
    C. J. Prabhakar
    Human-Centric Intelligent Systems, 2025, 5 (1): : 123 - 150
  • [39] Silhouette analysis for human action recognition based on maximum spatio-temporal dissimilarity embedding
    Jian Cheng
    Haijun Liu
    Hongsheng Li
    Machine Vision and Applications, 2014, 25 : 1007 - 1018
  • [40] Graph-based approach for human action recognition using spatio-temporal features
    Ben Aoun, Najib
    Mejdoub, Mahmoud
    Ben Amar, Chokri
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (02) : 329 - 338