Spatio-temporal information for human action recognition

被引:18
|
作者
Yao, Li [1 ,2 ]
Liu, Yunjian [3 ]
Huang, Shihui [3 ]
机构
[1] Southeast Univ, Minist Educ, Key Lab Comp Network & Informat Integrat, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
[3] Southeast Univ, Comp Sci & Engn Coll, Dongnandaxue Rd 2, Nanjing, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Spatio-temporal; Video representation; Multi-feature fusion; Human action recognition; REPRESENTATION; CONTEXT;
D O I
10.1186/s13640-016-0145-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Human activity recognition in videos is important for content-based videos indexing, intelligent monitoring, human-machine interaction, and virtual reality. This paper uses the low-level feature-based framework for human activity recognition which includes feature extraction and descriptor computing, early multi-feature fusion, video representation, and classification. This paper improves the first two steps. We propose a spatio-temporal bigraph-based multi-feature fusion algorithm to capture the useful visual information for recognition. Meanwhile, we introduce a compressed spatio-temporal video representation to bag of words representation. Our experiments on two popular datasets show efficient performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Spatio-temporal invariant descriptors for skeleton-based human action recognition
    Aouaidjia, Kamel
    Zhang, Chongsheng
    Pitas, Ioannis
    INFORMATION SCIENCES, 2025, 700
  • [22] Histogram of Directional Derivative Based Spatio-temporal Descriptor for Human Action Recognition
    Bhorge, Sidharth B.
    Manthalkar, Ramachandra R.
    2017 1ST IEEE INTERNATIONAL CONFERENCE ON DATA MANAGEMENT, ANALYTICS AND INNOVATION (ICDMAI), 2017, : 42 - 46
  • [23] Three-dimensional spatio-temporal trajectory descriptor for human action recognition
    Bhorge, Sidharth B.
    Manthalkar, Ramachandra R.
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2018, 7 (03) : 197 - 205
  • [24] Human Action Recognition by Learning Spatio-Temporal Features With Deep Neural Networks
    Wang, Lei
    Xu, Yangyang
    Cheng, Jun
    Xia, Haiying
    Yin, Jianqin
    Wu, Jiaji
    IEEE ACCESS, 2018, 6 : 17913 - 17922
  • [25] Spatio-Temporal Laplacian Pyramid Coding for Action Recognition
    Shao, Ling
    Zhen, Xiantong
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (06) : 817 - 827
  • [26] Human action recognition using Spatio-temporal Histogram of Structure Tensors descriptor
    Abdelhedi, Slim
    Wali, Ali
    Alimi, Adel M.
    JOURNAL OF INFORMATION ASSURANCE AND SECURITY, 2019, 14 (03): : 78 - 85
  • [27] Three-dimensional spatio-temporal trajectory descriptor for human action recognition
    Sidharth B. Bhorge
    Ramachandra R. Manthalkar
    International Journal of Multimedia Information Retrieval, 2018, 7 : 197 - 205
  • [28] A Spatio-Temporal Deep Learning Approach For Human Action Recognition in Infrared Videos
    Shah, Anuj K.
    Ghosh, Ripul
    Akula, Aparna
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XII, 2018, 10751
  • [29] A unified spatio-temporal human body region tracking approach to action recognition
    Al Harbi, Nouf
    Gotoh, Yoshihiko
    NEUROCOMPUTING, 2015, 161 : 56 - 64
  • [30] A comprehensive survey of human action recognition with spatio-temporal interest point (STIP) detector
    Das Dawn, Debapratim
    Shaikh, Soharab Hossain
    VISUAL COMPUTER, 2016, 32 (03) : 289 - 306