Optical analysis of doped ZnO thin films using nonparabolic conduction-band parameters

被引:27
作者
Kim, J. S. [1 ,2 ]
Jeong, J. -H. [3 ]
Park, J. K. [1 ]
Baik, Y. J. [1 ]
Kim, I. H. [1 ]
Seong, T. -Y. [2 ]
Kim, W. M. [1 ]
机构
[1] Korea Inst Sci & Technol, Elect Mat Res Ctr, Seoul 136791, South Korea
[2] Korea Univ, Div Mat Sci & Engn, Seoul 136701, South Korea
[3] Korea Inst Sci & Technol, Solar Cells Res Ctr, Seoul 136791, South Korea
基金
新加坡国家研究基金会;
关键词
ZINC-OXIDE FILMS; STATES EFFECTIVE-MASS; SCATTERING PARAMETER; TRANSPORT PHENOMENA; ELECTRON-TRANSPORT; CARRIER TRANSPORT; INDIUM OXIDE; TRANSPARENT; MECHANISM;
D O I
10.1063/1.4729571
中图分类号
O59 [应用物理学];
学科分类号
摘要
The optical properties of impurity doped ZnO thin films were analyzed by taking into account the nonparabolicity in the conduction-band and the optically determined carrier concentration and mobility were correlated with those measured by Hall measurement. The Drude parameters obtained by applying a simple Drude model combined with the Lorentz oscillator model for the optical transmittance and reflectance spectrum were analyzed by using the carrier density dependent bare band effective mass determined by the first-order nonparabolicity approximation. The squared plasma energy multiplied by the carrier density dependent effective mass yielded fairly linear relationship with respect to the carrier concentration in wide carrier density range of 10(19)-10(21) cm(-3), verifying the applicability of the nonparabolicity parameter for various types of impurity doped ZnO thin films. The correlation between the optical and Hall analyses was examined by taking the ratios of optical to Hall measurements for carrier density, mobility, and resistivity by introducing a parameter, R-dl, which represents the ratio of the resistances to electron transport from the inside of the lattice and from the crystallographic defects. For both the carrier concentration and mobility, the ratios of optical to Hall measurements were shown to exhibit a monotonically decreasing function of R-dl, indicating that the parameter R-dl could be used as a yardstick in correlating the optically determined carrier density and mobility with those measured by Hall analysis. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729571]
引用
收藏
页数:9
相关论文
共 41 条