Session search modeling by partially observable Markov decision process

被引:8
|
作者
Yang, Grace Hui [1 ]
Dong, Xuchu [1 ,2 ]
Luo, Jiyun [1 ]
Zhang, Sicong [1 ]
机构
[1] Georgetown Univ, Dept Comp Sci, Washington, DC 20057 USA
[2] Jilin Univ, Coll Comp Sci & Technol, Changchun, Jilin, Peoples R China
来源
INFORMATION RETRIEVAL JOURNAL | 2018年 / 21卷 / 01期
关键词
Session search; Dynamic IR modeling; POMDP;
D O I
10.1007/s10791-017-9316-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Session search, the task of document retrieval for a series of queries in a session, has been receiving increasing attention from the information retrieval research community. Session search exhibits the properties of rich user-system interactions and temporal dependency. These properties lead to our proposal of using partially observable Markov decision process to model session search. On the basis of a design choice schema for states, actions and rewards, we evaluate different combinations of these choices over the TREC 2012 and 2013 session track datasets. According to the experimental results, practical design recommendations for using PODMP in session search are discussed.
引用
收藏
页码:56 / 80
页数:25
相关论文
共 50 条
  • [1] Session search modeling by partially observable Markov decision process
    Grace Hui Yang
    Xuchu Dong
    Jiyun Luo
    Sicong Zhang
    Information Retrieval Journal, 2018, 21 : 56 - 80
  • [2] The Query Change Model: Modeling Session Search as a Markov Decision Process
    Yang, Hui
    Guan, Dongyi
    Zhang, Sicong
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2015, 33 (04)
  • [3] Partially Observable Markov Decision Process Approximations for Adaptive Sensing
    Edwin K. P. Chong
    Christopher M. Kreucher
    Alfred O. Hero
    Discrete Event Dynamic Systems, 2009, 19 : 377 - 422
  • [4] Partially Observable Markov Decision Process Approximations for Adaptive Sensing
    Chong, Edwin K. P.
    Kreucher, Christopher M.
    Hero, Alfred O., III
    DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 2009, 19 (03): : 377 - 422
  • [5] A tutorial on partially observable Markov decision processes
    Littman, Michael L.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2009, 53 (03) : 119 - 125
  • [6] Partially Observable Markov Decision Processes and Robotics
    Kurniawati, Hanna
    ANNUAL REVIEW OF CONTROL ROBOTICS AND AUTONOMOUS SYSTEMS, 2022, 5 : 253 - 277
  • [7] Underwater chemical plume tracing based on partially observable Markov decision process
    Jiu Hai-Feng
    Chen Yu
    Deng Wei
    Pang Shuo
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2019, 16 (02):
  • [8] A two-state partially observable Markov decision process with three actions
    Ben-Zvi, Tal
    Chernonog, Tatyana
    Avinadav, Tal
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 254 (03) : 957 - 967
  • [9] Partially observable Markov decision processes with imprecise parameters
    Itoh, Hideaki
    Nakamura, Kiyohiko
    ARTIFICIAL INTELLIGENCE, 2007, 171 (8-9) : 453 - 490
  • [10] DISTRIBUTIONALLY ROBUST PARTIALLY OBSERVABLE MARKOV DECISION PROCESS WITH MOMENT-BASED AMBIGUITY
    Nakao, Hideaki
    Jiang, Ruiwei
    Shen, Siqian
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 461 - 488