Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes

被引:144
作者
Le Potier, C [1 ]
机构
[1] Commissariat Energie Atom, DEN, DM2S, SFME,MTMS, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1016/j.crma.2005.10.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new finite volume method for highly anisotropic diffusion operators on unstructured meshes. The main idea is to calculate the gradient using a nonlinear scheme. For parabolic problems, if the time step is small enough. the resulting global matrix is monotone without geometrical constraints on the mesh and restrictive conditions on the anisotropy ratio. We check the precision of the method in comparison with analytical Solutions. The efficiency of the algorithm is demonstrated by comparing it with numerical schemes which do not satisfy a discrete maximum principle on the studied case.
引用
收藏
页码:787 / 792
页数:6
相关论文
共 7 条
[1]   The Andra Couplex 1 test case: Comparisons between finite-element, mixed hybrid finite element and finite volume element discretizations [J].
Bernard-Michel, G ;
Le Potier, C ;
Beccantini, A ;
Gounand, S ;
Chraibi, M .
COMPUTATIONAL GEOSCIENCES, 2004, 8 (02) :187-201
[2]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[3]  
Ciarlet P. G., 1973, Computer Methods in Applied Mechanics and Engineering, V2, P17, DOI 10.1016/0045-7825(73)90019-4
[4]  
DABBENE F, 1998, P 10 INT C FIN EL FL
[5]  
HERBIN R, 1995, NUMER METH PART D E, V11, P165, DOI DOI 10.1002/NUM.1690110205.URL
[6]   Finite volume scheme for highly anisotropic diffusion operators on unstructured meshes. [J].
Le Potier, C .
COMPTES RENDUS MATHEMATIQUE, 2005, 340 (12) :921-926
[7]  
LEPOTIER C, 2005, FINITE VOLUMES COMPL, V4