How does negative Poisson's ratio of foam filler affect crashworthiness?

被引:128
作者
Hou, Shujuan [1 ,2 ]
Liu, Taiqu [1 ,2 ]
Zhang, Zhidan [1 ,2 ]
Han, Xu [1 ,2 ]
Li, Qing [3 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Hunan, Peoples R China
[3] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金;
关键词
Negative Poisson's ratio (NPR); Foam-filled tubes; Multiobjective optimization; Crashworthiness; Auxetic foam; SQUARE ALUMINUM EXTRUSIONS; SHEET-METAL TUBES; MULTIOBJECTIVE OPTIMIZATION; DESIGN; COLUMNS; PERFORMANCE; SECTIONS; SANDWICH; CRITERIA; IMPACT;
D O I
10.1016/j.matdes.2015.05.050
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As an effective candidate for enhancing energy absorption, a range of foam materials have gained considerable popularity, in which the density, Young's modulus and plasticity of foam materials are considered critical to crashworthiness. Relatively speaking, less attention has been paid to the roles played by the Poisson's ratio of foam or cellular materials. More importantly, the interaction between different Poisson's ratios and thin-walled structures has been a critical yet under-studied issue. This paper aims to explore the effects of negative, zero and positive Poisson's ratio of auxetic foams, ranging from -1 to 0.5, on structural crashworthiness and seek optimal design for different foam-filled square, circular and conic tubes. In this study the specific energy absorption (SEA) and mean crushing force (MCF) are taken as the objective functions by using mathematical regression analysis. The sequential quadratic programming (SQP) and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are employed for single and multiobjective design of foam-filled tubes with different Poisson's ratios, respectively. The optimal Poisson's ratio is obtained for these three different types of foam-filled tubes. By comparison we found that the crashworthiness of foam filled conic tube is the best, followed by circular and then squared tubes. The study provides new insights into material selection and design with a more favorable Poisson's ratio for crashworthiness. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:247 / 259
页数:13
相关论文
共 47 条
[1]  
Abramowicz W., 1986, INT J IMPACT ENG, V4, P243, DOI DOI 10.1016/0734-743X(86)90017-5
[2]   Application of foam-filled conical tubes in enhancing the crashworthiness performance of vehicle protective structures [J].
Ahmad, Z. ;
Thambiratnam, D. P. .
INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2009, 14 (04) :349-363
[3]   Nonlinear finite element analysis of the crush behaviour of functionally graded foam-filled columns [J].
Attia, M. S. ;
Meguid, S. A. ;
Nouraei, H. .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2012, 61 :50-59
[4]   Aluminium foams for transport industry [J].
Baumeister, J ;
Banhart, J ;
Weber, M .
MATERIALS & DESIGN, 1997, 18 (4-6) :217-220
[5]   Modeling and optimization of foam-filled thin-walled columns for crashworthiness designs [J].
Bi, Jing ;
Fang, Hongbing ;
Wang, Qian ;
Ren, Xuchun .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2010, 46 (09) :698-709
[6]   Density-graded cellular aluminum [J].
Brothers, Alan H. ;
Dunand, David C. .
ADVANCED ENGINEERING MATERIALS, 2006, 8 (09) :805-809
[7]   On design of multi-functional microstructural materials [J].
Cadman, Joseph E. ;
Zhou, Shiwei ;
Chen, Yuhang ;
Li, Qing .
JOURNAL OF MATERIALS SCIENCE, 2013, 48 (01) :51-66
[8]   Fabrication methods for auxetic foams [J].
Chan, N ;
Evans, KE .
JOURNAL OF MATERIALS SCIENCE, 1997, 32 (22) :5945-5953
[9]   Designing the energy absorption capacity of functionally graded foam materials [J].
Cui, Liang ;
Kiernan, Stephen ;
Gilchrist, Michael D. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 507 (1-2) :215-225
[10]   Parametric analysis and multiobjective optimization for functionally graded foam-filled thin-wall tube under lateral impact [J].
Fang, Jianguang ;
Gao, Yunkai ;
Sun, Guangyong ;
Zhang, Yuting ;
Li, Qing .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 90 :265-275