Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes

被引:148
作者
Yang, Inchan [1 ]
Kim, Sang-Gil [2 ]
Kwon, Soon Hyung [2 ]
Kim, Myung-Soo [1 ]
Jung, Ji Chul [1 ]
机构
[1] Myongji Univ, Dept Chem Engn, Yongin 17058, South Korea
[2] Vizrocell Co, R&D Ctr, Chungnam 32417, South Korea
关键词
Carbon aerogel; Acetone exchange method; Ionic resistance; Electronic resistance; Organic electrolyte; HIGH-SURFACE-AREA; CONTROLLED MICROPORES; MESOPOROUS CARBON; ACTIVATED CARBONS; POROUS CARBONS; SUPERCAPACITOR; ENERGY; RESORCINOL; POLYCONDENSATION; PERFORMANCE;
D O I
10.1016/j.electacta.2016.11.177
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbon aerogels are prepared from polycondensation of resorcinol and formaldehyde using sodium carbonate as a base catalyst while controlling the ratio of resorcinol to catalyst (R/C). Pore size of the carbon aerogel shows a tendency to increase with the R/C ratio because of the low addition reaction rate between two starting materials with a small amount of catalyst. In addition, the pore size of the carbon aerogels strongly affects their charge transfer resistance and their potential use as organic electric double-layer capacitor electrodes. Ionic resistance to facile mobility of electrolyte ions decreases with increasing pore size of the carbon aerogels, while their electronic resistance exhibited the opposite trend with respect to pore size. These compensation effects between ionic resistance and electronic resistance lead to a different optimum pore size of carbon aerogels for EDLC electrodes depending on the applied charge-discharge rate. A carbon aerogel with large pore size is favorable for use in a low-rate charge-discharge process, while one with small pore size have good performance in a high-rate charge-discharge process. Therefore, we suggest that designing an efficient mesoporous carbon material for an EDLC electrode should include significant consideration of its end use, especially the rate employed for the charge-discharge process. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 61 条
[1]   Preparation and properties of resorcinol-formaldehyde organic and carbon gels [J].
Al-Muhtaseb, SA ;
Ritter, JA .
ADVANCED MATERIALS, 2003, 15 (02) :101-+
[2]  
An KH, 2001, ADV MATER, V13, P497, DOI 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO
[3]  
2-H
[4]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[5]  
Belhachemi F, 2000, IEEE IND APPLIC SOC, P3069, DOI 10.1109/IAS.2000.882604
[6]   Advanced carbon aerogels for energy applications [J].
Biener, Juergen ;
Stadermann, Michael ;
Suss, Matthew ;
Worsley, Marcus A. ;
Biener, Monika M. ;
Rose, Klint A. ;
Baumann, Theodore F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :656-667
[7]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[8]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[9]   A review of molecular modelling of electric double layer capacitors [J].
Burt, Ryan ;
Birkett, Greg ;
Zhao, X. S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (14) :6519-6538
[10]   High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers [J].
Cai, Jie ;
Niu, Haitao ;
Wang, Hongxia ;
Shao, Hao ;
Fang, Jian ;
He, Jingren ;
Xiong, Hanguo ;
Ma, Chengjie ;
Lin, Tong .
JOURNAL OF POWER SOURCES, 2016, 324 :302-308