Neutronic Analysis on Potential Accident Tolerant Fuel-Cladding Combination U3Si2-FeCrAl

被引:59
作者
Chen, Shengli [1 ]
Yuan, Cenxi [1 ]
机构
[1] Sun Yat Sen Univ, Sinofrench Inst Nucl Engn & Technol, Zhuhai 519082, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
NORMAL OPERATION; PERFORMANCE; ALLOYS;
D O I
10.1155/2017/3146985
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Neutronic performance is investigated for a potential accident tolerant fuel (ATF), which consists of U3Si2 fuel and FeCrAl cladding. In comparison with current UO2-Zr system, FeCrAl has a better oxidation resistance but a larger thermal neutron absorption cross section. U3Si2 has a higher thermal conductivity and a higher uranium density, which can compensate the reactivity suppressed by FeCrAl. Based on neutronic investigations, a possible U3Si2-FeCrAl fuel-cladding system is taken into consideration. Fundamental properties of the suggested fuel-cladding combination are investigated in a fuel assembly. These properties include moderator and fuel temperature coefficients, control rods worth, radial power distribution (in a fuel rod), and different void reactivity coefficients. The present work proves that the new combination has less reactivity variation during its service lifetime. Although, compared with the current system, it has a little larger deviation on power distribution and a little less negative temperature coefficient and void reactivity coefficient and its control rods worth is less important, variations of these parameters are less important during the service lifetime of fuel. Hence, U3Si2-FeCrAl system is a potential ATF candidate from a neutronic view.
引用
收藏
页数:12
相关论文
共 36 条
[1]  
[Anonymous], 2011, ORNLTM200539 RAD SAF
[2]  
[Anonymous], ORNLTM2013121
[3]   SCALE 6: COMPREHENSIVE NUCLEAR SAFETY ANALYSIS CODE SYSTEM [J].
Bowman, S. M. .
NUCLEAR TECHNOLOGY, 2011, 174 (02) :126-148
[4]  
Brache J. C., 2014, P FONT 8 C CONTR MAT
[5]   The potential impact of enhanced accident tolerant cladding materials on reactivity initiated accidents in light water reactors [J].
Brown, Nicholas R. ;
Wysocki, Aaron J. ;
Terrani, Kurt A. ;
Xu, Kevin G. ;
Wachs, Daniel M. .
ANNALS OF NUCLEAR ENERGY, 2017, 99 :353-365
[6]   Screening of advanced cladding materials and UN-U3Si5 fuel [J].
Brown, Nicholas R. ;
Todosow, Michael ;
Cuadra, Arantxa .
JOURNAL OF NUCLEAR MATERIALS, 2015, 462 :26-42
[7]   Neutronic performance of uranium nitride composite fuels in a PWR [J].
Brown, Nicholas R. ;
Aronson, Arnold ;
Todosow, Michael ;
Brito, Ryan ;
McClellan, Kenneth J. .
NUCLEAR ENGINEERING AND DESIGN, 2014, 275 :393-407
[8]   Neutronic evaluation of a PWR with fully ceramic microencapsulated fuel. Part I: Lattice benchmarking, cycle length, and reactivity coefficients [J].
Brown, Nicholas R. ;
Ludewig, Hans ;
Aronson, Arnold ;
Raitses, Gilad ;
Todosow, Michael .
ANNALS OF NUCLEAR ENERGY, 2013, 62 :538-547
[9]   ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology [J].
Chadwick, M. B. ;
Oblozinsky, P. ;
Herman, M. ;
Greene, N. M. ;
McKnight, R. D. ;
Smith, D. L. ;
Young, P. G. ;
MacFarlane, R. E. ;
Hale, G. M. ;
Frankle, S. C. ;
Kahler, A. C. ;
Kawano, T. ;
Little, R. C. ;
Madland, D. G. ;
Moller, P. ;
Mosteller, R. D. ;
Page, P. R. ;
Talou, P. ;
Trellue, H. ;
White, M. C. ;
Wilson, W. B. ;
Arcilla, R. ;
Dunford, C. L. ;
Mughabghab, S. F. ;
Pritychenko, B. ;
Rochman, D. ;
Sonzogni, A. A. ;
Lubitz, C. R. ;
Trumbull, T. H. ;
Weinman, J. P. ;
Brown, D. A. ;
Cullen, D. E. ;
Heinrichs, D. P. ;
McNabb, D. P. ;
Derrien, H. ;
Dunn, M. E. ;
Larson, N. M. ;
Leal, L. C. ;
Carlson, A. D. ;
Block, R. C. ;
Briggs, J. B. ;
Cheng, E. T. ;
Huria, H. C. ;
Zerkle, M. L. ;
Kozier, K. S. ;
Courcelle, A. ;
Pronyaev, V. ;
van der Marck, S. C. .
NUCLEAR DATA SHEETS, 2006, 107 (12) :2931-3059
[10]   REACTOR PHYSICS METHODS AND ANALYSIS CAPABILITIES IN SCALE [J].
DeHart, Mark D. ;
Bowman, Stephen M. .
NUCLEAR TECHNOLOGY, 2011, 174 (02) :196-213