Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors

被引:84
|
作者
Lloyd, David J. [1 ]
St Jean, David J., Jr. [2 ]
Kurzeja, Robert J. M. [2 ]
Wahl, Robert C. [2 ]
Michelsen, Klaus [2 ]
Cupples, Rod [1 ]
Chen, Michelle [1 ]
Wu, John [1 ]
Sivits, Glenn [1 ]
Helmering, Joan [1 ]
Komorowski, Renee [1 ]
Ashton, Kate S. [2 ]
Pennington, Lewis D. [2 ]
Fotsch, Christopher [2 ]
Vazir, Mukta [2 ]
Chen, Kui [2 ]
Chmait, Samer [2 ]
Zhang, Jiandong [2 ]
Liu, Longbin [2 ]
Norman, Mark H. [2 ]
Andrews, Kristin L. [2 ]
Bartberger, Michael D. [2 ]
Van, Gwyneth [3 ]
Galbreath, Elizabeth J. [3 ]
Vonderfecht, Steven L. [3 ]
Wang, Minghan [1 ]
Jordan, Steven R. [2 ]
Veniant, Murielle M. [1 ]
Hale, Clarence [1 ]
机构
[1] Amgen Inc, Dept Metab Disorders, Thousand Oaks, CA 91320 USA
[2] Amgen Inc, Dept Therapeut Discovery, Thousand Oaks, CA 91320 USA
[3] Amgen Inc, Dept Comparat Biol & Safety Sci, Thousand Oaks, CA 91320 USA
关键词
LIVER GLUCOKINASE; ACTIVATOR; GLUCOSE; IDENTIFICATION; TRANSLOCATION; FRUCTOSE; MK-0941; DEFECT; CELLS;
D O I
10.1038/nature12724
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus(1). Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate(2,3) in pancreatic beta-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes(4). In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production(3,5), and is subject to the endogenous inhibitor GK regulatory protein (GKRP)(6-8). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus(1,9,10). However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators(11). To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.
引用
收藏
页码:437 / +
页数:16
相关论文
共 50 条
  • [41] Ordering a Dynamic Protein Via a Small-Molecule Stabilizer
    Wang, Ningkun
    Majmudar, Chinmay Y.
    Pomerantz, William C.
    Gagnon, Jessica K.
    Sadowsky, Jack D.
    Meagher, Jennifer L.
    Johnson, Taylor K.
    Stuckey, Jeanne A.
    Brooks, Charles L., III
    Wells, James A.
    Mapp, Anna K.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (09) : 3363 - 3366
  • [42] Small-molecule inhibitors of protein geranylgeranyltransferase type I
    Castellano, Sabrina
    Fiji, Hannah D. G.
    Kinderman, Sape S.
    Watanabe, Masaru
    de Leon, Pablo
    Tamanoi, Fuyuhiko
    Kwon, Ohyun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (18) : 5843 - +
  • [43] Catalytic in vivo protein knockdown by small-molecule PROTACs
    Bondeson, Daniel P.
    Mares, Alina
    Smith, Ian E. D.
    Ko, Eunhwa
    Campos, Sebastien
    Miah, Afjal H.
    Mulholland, Katie E.
    Routly, Natasha
    Buckley, Dennis L.
    Gustafson, Jeffrey L.
    Zinn, Nico
    Grandi, Paola
    Shimamura, Satoko
    Bergamini, Giovanna
    Faelth-Savitski, Maria
    Bantscheff, Marcus
    Cox, Carly
    Gordon, Deborah A.
    Willard, Ryan R.
    Flanagan, John J.
    Casillas, Linda N.
    Votta, Bartholomew J.
    den Besten, Willem
    Famm, Kristoffer
    Kruidenier, Laurens
    Carter, Paul S.
    Harling, John D.
    Churcher, Ian
    Crews, Craig M.
    NATURE CHEMICAL BIOLOGY, 2015, 11 (08) : 611 - U120
  • [44] SPLINTS: small-molecule protein ligand interface stabilizers
    Fischer, Eric S.
    Park, Eunyoung
    Eck, Michael J.
    Thomae, Nicolas H.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2016, 37 : 115 - 122
  • [45] Small-Molecule PROTACS: New Approaches to Protein Degradation
    Toure, Momar
    Crews, Craig M.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (06) : 1966 - 1973
  • [46] A small-molecule catalyst of protein folding in vitro and in vivo
    Woycechowsky, KJ
    Wittrup, KD
    Raines, RT
    CHEMISTRY & BIOLOGY, 1999, 6 (12): : 871 - 879
  • [47] Small-molecule modulators of protein-RNA interactions
    Byun, Wan Gi
    Lim, Donghyun
    Park, Seung Bum
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2022, 68
  • [48] Catalytic in vivo protein knockdown by small-molecule PROTACs
    Bondeson D.P.
    Mares A.
    Smith I.E.D.
    Ko E.
    Campos S.
    Miah A.H.
    Mulholland K.E.
    Routly N.
    Buckley D.L.
    Gustafson J.L.
    Zinn N.
    Grandi P.
    Shimamura S.
    Bergamini G.
    Faelth-Savitski M.
    Bantscheff M.
    Cox C.
    Gordon D.A.
    Willard R.R.
    Flanagan J.J.
    Casillas L.N.
    Votta B.J.
    Den Besten W.
    Famm K.
    Kruidenier L.
    Carter P.S.
    Harling J.D.
    Churcher I.
    Crews C.M.
    Nature Chemical Biology, 2015, 11 (8) : 611 - 617
  • [49] Protein tyrosine kinases: autoregulation and small-molecule inhibition
    Hubbard, SR
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (06) : 735 - 741
  • [50] Evolution and Protein Packaging of Small-Molecule RNA Aptamers
    Lau, Jolene L.
    Baksh, Michael M.
    Fiedler, Jason D.
    Brown, Steven D.
    Kussrow, Amanda
    Bornhop, Darryl J.
    Ordoukhanian, Phillip
    Finn, M. G.
    ACS NANO, 2011, 5 (10) : 7722 - 7729