Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics

被引:44
作者
Altmann, E. G. [1 ,2 ]
Del Magno, G. [1 ]
Hentschel, M. [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Northwestern Univ, NW Inst Complex Syst, Evanston, IL 60628 USA
关键词
D O I
10.1209/0295-5075/84/10008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce and investigate billiard systems with an adjusted ray dynamics that accounts for modifications of the conventional reflection of rays due to universal wave effects. We show that even small modi. cations of the specular reflection law have dramatic consequences on the phase space of classical billiards. These include the creation of regions of non-Hamiltonian dynamics, the breakdown of symmetries, and changes in the stability and morphology of periodic orbits. Focusing on optical microcavities, we show that our adjusted dynamics provides the missing ray counterpart to previously observed wave phenomena and we describe how to observe its signatures in experiments. Our findings also apply to acoustic and ultrasound waves and are important in all situations where wavelengths are comparable to system sizes, an increasingly likely situation considering the systematic reduction of the size of electronic and photonic devices. Copyright (C) EPLA, 2008
引用
收藏
页数:6
相关论文
共 37 条
[1]   QUANTUM TUNNELING AND CHAOTIC DYNAMICS [J].
BOHIGAS, O ;
BOOSE, D ;
DECARVALHO, RE ;
MARVULLE, V .
NUCLEAR PHYSICS A, 1993, 560 (01) :197-210
[2]   WEAK-LOCALIZATION IN CHAOTIC VERSUS NONCHAOTIC CAVITIES - A STRIKING DIFFERENCE IN THE LINE-SHAPE [J].
CHANG, AM ;
BARANGER, HU ;
PFEIFFER, LN ;
WEST, KW .
PHYSICAL REVIEW LETTERS, 1994, 73 (15) :2111-2114
[3]   Spectral properties of Bunimovich mushroom billiards [J].
Dietz, B. ;
Friedrich, T. ;
Miski-Oglu, M. ;
Richter, A. ;
Schaefer, F. .
PHYSICAL REVIEW E, 2007, 75 (03)
[4]   Light scarring in an optical fiber [J].
Doya, V ;
Legrand, O ;
Mortessagne, F ;
Miniatura, C .
PHYSICAL REVIEW LETTERS, 2002, 88 (01) :4
[5]   Analysis of high-quality modes in open chaotic microcavities [J].
Fang, W ;
Yamilov, A ;
Cao, H .
PHYSICAL REVIEW A, 2005, 72 (02)
[6]   Goos-Hanchen induced vector eigenmodes in a dome cavity [J].
Foster, David H. ;
Cook, Andrew K. ;
Nockel, Jens U. .
OPTICS LETTERS, 2007, 32 (12) :1764-1766
[7]   Kolmogorov-Arnold-Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators [J].
Gmachl, C ;
Narimanov, EE ;
Capasso, F ;
Baillargeon, JN ;
Cho, AY .
OPTICS LETTERS, 2002, 27 (10) :824-826
[8]   *EIN NEUER UND FUNDAMENTALER VERSUCH ZUR TOTALREFLEXION [J].
GOOS, F ;
HANCHEN, H .
ANNALEN DER PHYSIK, 1947, 1 (7-8) :333-346
[9]   Lasing on scar modes in fully chaotic microcavities [J].
Harayama, T ;
Fukushima, T ;
Davis, P ;
Vaccaro, PO ;
Miyasaka, T ;
Nishimura, T ;
Aida, T .
PHYSICAL REVIEW E, 2003, 67 (01) :4
[10]   BOUND-STATE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC HAMILTONIAN-SYSTEMS - SCARS OF PERIODIC-ORBITS [J].
HELLER, EJ .
PHYSICAL REVIEW LETTERS, 1984, 53 (16) :1515-1518