Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene

被引:174
作者
Zhao, Liuyan [1 ]
Levendorf, Mark [2 ]
Goncher, Scott [3 ]
Schiros, Theanne [4 ]
Palova, Lucia [3 ]
Zabet-Khosousi, Arnir [3 ]
Rim, Kwang Taeg [3 ]
Gutierrez, Christopher [1 ]
Nordlund, Dennis [5 ]
Jaye, Cherno [6 ]
Hybertsen, Mark [7 ]
Reichman, David R. [3 ]
Flynn, George W. [3 ]
Park, Jiwoong [2 ]
Pasupathy, Abhay N. [1 ]
机构
[1] Columbia Univ, Dept Phys, New York, NY 10027 USA
[2] Cornell Univ, Dept Chem, Ithaca, NY 10065 USA
[3] Columbia Univ, Dept Chem, New York, NY 10027 USA
[4] Columbia Univ, Energy Frontier Res Ctr, New York, NY 10027 USA
[5] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[6] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[7] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
Graphene chemical doping; scanning tunneling microscopy/spectroscopy; boron-doped graphene; graphene functionalization; X-ray spectroscopy; NITROGEN-DOPED GRAPHENE; VAPOR-DEPOSITION; SPECTROSCOPY; GROWTH; ENERGY; CARBON; EDGE;
D O I
10.1021/nl401781d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We use scanning tunneling microscopy and X-ray spectroscopy to characterize the, atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes 0.5 carriers into the graphene sheet per dopant: Density functional theory calculations indicate that boron dopants interact strongly with the, underlying copper substrate while nitrogen dopants do not. The local bonding differences between graphitic boron and nitrogen dopants lead to large scale differences in dopant distribution. The distribution of dopants is observed to be completely random in the case of boron, while nitrogen displays strong sublattice clustering. Structurally, nitrogen-doped graphene is doped graphene films show.a large number of Stone-Wales defects. These defects create local electronic resonances electronic scattering, but do not electronically dope the graphene film. relatively defect-free while boronand cause
引用
收藏
页码:4659 / 4665
页数:7
相关论文
共 53 条
[1]   Equilibrium at the edge and atomistic mechanisms of graphene growth [J].
Artyukhov, Vasilii I. ;
Liu, Yuanyue ;
Yakobson, Boris I. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (38) :15136-15140
[2]  
Ashcroft N. W, 1976, SOLID STATE PHYS
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects [J].
Cervenka, J. ;
Flipse, C. F. J. .
PHYSICAL REVIEW B, 2009, 79 (19)
[5]  
Chakrabarti D.J., 1982, Bulletin of Alloy Phase Diagrams, V3, P45, DOI DOI 10.1007/BF02873410
[6]   Graphing and grafting graphene: Classifying finite topological defects [J].
Cockayne, Eric .
PHYSICAL REVIEW B, 2012, 85 (12)
[7]   Grain boundary loops in graphene [J].
Cockayne, Eric ;
Rutter, Gregory M. ;
Guisinger, Nathan P. ;
Crain, Jason N. ;
First, Phillip N. ;
Stroscio, Joseph A. .
PHYSICAL REVIEW B, 2011, 83 (19)
[8]   Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite [J].
Endo, M ;
Hayashi, T ;
Hong, SH ;
Enoki, T ;
Dresselhaus, MS .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (11) :5670-5674
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534