Deep learning-based diagnosis of Alzheimer's disease using brain magnetic resonance images: an empirical study

被引:14
作者
Kim, Jun Sung [1 ,2 ]
Han, Ji Won [2 ,3 ]
Bae, Jong Bin [2 ]
Moon, Dong Gyu [2 ]
Shin, Jin [2 ]
Kong, Juhee Eliana [2 ]
Lee, Hyungji [2 ]
Yang, Hee Won [4 ]
Lim, Eunji [5 ]
Kim, Jun Yup [6 ]
Sunwoo, Leonard [7 ,8 ]
Cho, Se Jin [7 ,8 ]
Lee, Dongsoo [9 ]
Kim, Injoong [10 ]
Ha, Sang Won [11 ]
Kang, Min Ju [11 ]
Suh, Chong Hyun [12 ,13 ]
Shim, Woo Hyun [12 ,13 ]
Kim, Sang Joon [12 ,13 ]
Kim, Ki Woong [1 ,2 ,3 ,14 ]
机构
[1] Seoul Natl Univ, Med Res Ctr, Inst Human Behav Med, Seoul, South Korea
[2] Seoul Natl Univ, Bundang Hosp, Dept Neuropsychiat, 82,Gumi Ro 173, Seongnam Si 13620, Gyeonggi Do, South Korea
[3] Seoul Natl Univ, Coll Med, Dept Psychiat, Seoul, South Korea
[4] Chungnam Natl Univ Hosp, Dept Psychiat, Daejeon, South Korea
[5] Gyeongsang Natl Univ, Changwon Hosp, Dept Neuropsychiat, Chang Won, South Korea
[6] Seoul Natl Univ, Bundang Hosp, Dept Neurol, Seongnam, South Korea
[7] Seoul Natl Univ, Bundang Hosp, Dept Radiol, Seongnam, South Korea
[8] Seoul Natl Univ, Coll Med, Dept Radiol, Seoul, South Korea
[9] VUNO Inc, Seoul, South Korea
[10] Vet Hlth Serv Med Ctr, Dept Radiol, Seoul, South Korea
[11] Vet Hlth Serv Med Ctr, Dept Neurol, Seoul, South Korea
[12] Univ Ulsan, Asan Med Ctr, Coll Med, Dept Radiol, Seoul, South Korea
[13] Univ Ulsan, Asan Med Ctr, Coll Med, Res Inst Radiol, Seoul, South Korea
[14] Seoul Natl Univ, Coll Nat Sci, Dept Brain & Cognit Sci, Seoul, South Korea
关键词
MILD COGNITIVE IMPAIRMENT; ASSOCIATION WORKGROUPS; NATIONAL INSTITUTE; RECOMMENDATIONS; GUIDELINES; ATROPHY; MRI; DEMENTIA;
D O I
10.1038/s41598-022-22917-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The limited accessibility of medical specialists for Alzheimer's disease (AD) can make obtaining an accurate diagnosis in a timely manner challenging and may influence prognosis. We investigated whether VUNO Med-DeepBrain AD (DBAD) using a deep learning algorithm can be employed as a decision support service for the diagnosis of AD. This study included 98 elderly participants aged 60 years or older who visited the Seoul Asan Medical Center and the Korea Veterans Health Service. We administered a standard diagnostic assessment for diagnosing AD. DBAD and three panels of medical experts (ME) diagnosed participants with normal cognition (NC) or AD using T1-weighted magnetic resonance imaging. The accuracy (87.1% for DBAD and 84.3% for ME), sensitivity (93.3% for DBAD and 80.0% for ME), and specificity (85.5% for DBAD and 85.5% for ME) of both DBAD and ME for diagnosing AD were comparable; however, DBAD showed a higher trend in every analysis than ME diagnosis. DBAD may support the clinical decisions of physicians who are not specialized in AD; this may enhance the accessibility of AD diagnosis and treatment.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Unveiling the sound of the cognitive status: Machine Learning-based speech analysis in the Alzheimer's disease spectrum
    Garcia-Gutierrez, Fernando
    Alegret, Montserrat
    Marquie, Marta
    Munoz, Nathalia
    Ortega, Gemma
    Cano, Amanda
    De Rojas, Itziar
    Garcia-Gonzalez, Pablo
    Olive, Claudia
    Puerta, Raquel
    Garcia-Sanchez, Ainhoa
    Capdevila-Bayo, Maria
    Montrreal, Laura
    Pytel, Vanesa
    Rosende-Roca, Maitee
    Zaldua, Carla
    Gabirondo, Peru
    Tarraga, Lluis
    Ruiz, Agustin
    Boada, Merce
    Valero, Sergi
    [J]. ALZHEIMERS RESEARCH & THERAPY, 2024, 16 (01)
  • [42] Predicting Alzheimer's disease progression using multi-modal deep learning approach
    Lee, Garam
    Nho, Kwangsik
    Kang, Byungkon
    Sohn, Kyung-Ah
    Kim, Dokyoon
    Weiner, Michael W.
    Aisen, Paul
    Petersen, Ronald
    Jack, Clifford R., Jr.
    Jagust, William
    Trojanowki, John Q.
    Toga, Arthur W.
    Beckett, Laurel
    Green, Robert C.
    Saykin, Andrew J.
    Morris, John
    Shaw, Leslie M.
    Khachaturian, Zaven
    Sorensen, Greg
    Carrillo, Maria
    Kuller, Lew
    Raichle, Marc
    Paul, Steven
    Davies, Peter
    Fillit, Howard
    Hefti, Franz
    Holtzman, Davie
    Mesulam, M. Marcel
    Potter, William
    Snyder, Peter
    Montine, Tom
    Thomas, Ronald G.
    Donohue, Michael
    Walter, Sarah
    Sather, Tamie
    Jiminez, Gus
    Balasubramanian, Archana B.
    Mason, Jennifer
    Sim, Iris
    Harvey, Danielle
    Bernstein, Matthew
    Fox, Nick
    Thompson, Paul
    Schuff, Norbert
    DeCArli, Charles
    Borowski, Bret
    Gunter, Jeff
    Senjem, Matt
    Vemuri, Prashanthi
    Jones, David
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [43] Functional magnetic resonance imaging, deep learning, and Alzheimer's disease: A systematic review
    Warren, Samuel L.
    Moustafa, Ahmed A.
    [J]. JOURNAL OF NEUROIMAGING, 2023, 33 (01) : 5 - 18
  • [44] A Deep Learning for Alzheimer?s Stages Detection Using Brain Images
    Ullah, Zahid
    Jamjoom, Mona
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 1457 - 1473
  • [45] Deep learning for Alzheimer's disease diagnosis: A survey
    Khojaste-Sarakhsi, M.
    Haghighi, Seyedhamidreza Shahabi
    Ghomi, S. M. T. Fatemi
    Marchiori, Elena
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 130
  • [46] Comparing new templates and atlas-based segmentations in the volumetric analysis of brain magnetic resonance images for diagnosing Alzheimer's disease
    Shen, Qian
    Zhao, Weizhao
    Loewenstein, David A.
    Potter, Elizabeth
    Greig, Maria T.
    Raj, Ashok
    Barker, Warren
    Potter, Huntington
    Duara, Ranjan
    [J]. ALZHEIMERS & DEMENTIA, 2012, 8 (05) : 399 - 406
  • [47] Early Diagnosis of Alzheimer's Disease Using Deep Learning
    Ji, Huanhuan
    Liu, Zhenbing
    Yan, Wei Qi
    Klette, Reinhard
    [J]. ICCCV 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CONTROL AND COMPUTER VISION, 2019, : 87 - 91
  • [48] Hybrid Pattern Extraction with Deep Learning-Based Heart Disease Diagnosis Using Echocardiogram Images
    Chamundeshwari
    Biradar, Nagashetteppa
    Udaykumar
    [J]. INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023, 23 (02)
  • [49] Comparison of Transfer Learning and Conventional Machine Learning Applied to Structural Brain MRI for the Early Diagnosis and Prognosis of Alzheimer's Disease
    Nanni, Loris
    Interlenghi, Matteo
    Brahnam, Sheryl
    Salvatore, Christian
    Papa, Sergio
    Nemni, Raffaello
    Castiglioni, Isabella
    [J]. FRONTIERS IN NEUROLOGY, 2020, 11
  • [50] Visual Rating System for Assessing Magnetic Resonance Images: A Tool in the Diagnosis of Mild Cognitive Impairment and Alzheimer Disease
    Urs, Raksha
    Potter, Elizabeth
    Barker, Warren
    Appel, Jason
    Loewenstein, David A.
    Zhao, Weizhao
    Duara, Ranjan
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2009, 33 (01) : 73 - 78