Deep learning-based diagnosis of Alzheimer's disease using brain magnetic resonance images: an empirical study

被引:14
作者
Kim, Jun Sung [1 ,2 ]
Han, Ji Won [2 ,3 ]
Bae, Jong Bin [2 ]
Moon, Dong Gyu [2 ]
Shin, Jin [2 ]
Kong, Juhee Eliana [2 ]
Lee, Hyungji [2 ]
Yang, Hee Won [4 ]
Lim, Eunji [5 ]
Kim, Jun Yup [6 ]
Sunwoo, Leonard [7 ,8 ]
Cho, Se Jin [7 ,8 ]
Lee, Dongsoo [9 ]
Kim, Injoong [10 ]
Ha, Sang Won [11 ]
Kang, Min Ju [11 ]
Suh, Chong Hyun [12 ,13 ]
Shim, Woo Hyun [12 ,13 ]
Kim, Sang Joon [12 ,13 ]
Kim, Ki Woong [1 ,2 ,3 ,14 ]
机构
[1] Seoul Natl Univ, Med Res Ctr, Inst Human Behav Med, Seoul, South Korea
[2] Seoul Natl Univ, Bundang Hosp, Dept Neuropsychiat, 82,Gumi Ro 173, Seongnam Si 13620, Gyeonggi Do, South Korea
[3] Seoul Natl Univ, Coll Med, Dept Psychiat, Seoul, South Korea
[4] Chungnam Natl Univ Hosp, Dept Psychiat, Daejeon, South Korea
[5] Gyeongsang Natl Univ, Changwon Hosp, Dept Neuropsychiat, Chang Won, South Korea
[6] Seoul Natl Univ, Bundang Hosp, Dept Neurol, Seongnam, South Korea
[7] Seoul Natl Univ, Bundang Hosp, Dept Radiol, Seongnam, South Korea
[8] Seoul Natl Univ, Coll Med, Dept Radiol, Seoul, South Korea
[9] VUNO Inc, Seoul, South Korea
[10] Vet Hlth Serv Med Ctr, Dept Radiol, Seoul, South Korea
[11] Vet Hlth Serv Med Ctr, Dept Neurol, Seoul, South Korea
[12] Univ Ulsan, Asan Med Ctr, Coll Med, Dept Radiol, Seoul, South Korea
[13] Univ Ulsan, Asan Med Ctr, Coll Med, Res Inst Radiol, Seoul, South Korea
[14] Seoul Natl Univ, Coll Nat Sci, Dept Brain & Cognit Sci, Seoul, South Korea
关键词
MILD COGNITIVE IMPAIRMENT; ASSOCIATION WORKGROUPS; NATIONAL INSTITUTE; RECOMMENDATIONS; GUIDELINES; ATROPHY; MRI; DEMENTIA;
D O I
10.1038/s41598-022-22917-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The limited accessibility of medical specialists for Alzheimer's disease (AD) can make obtaining an accurate diagnosis in a timely manner challenging and may influence prognosis. We investigated whether VUNO Med-DeepBrain AD (DBAD) using a deep learning algorithm can be employed as a decision support service for the diagnosis of AD. This study included 98 elderly participants aged 60 years or older who visited the Seoul Asan Medical Center and the Korea Veterans Health Service. We administered a standard diagnostic assessment for diagnosing AD. DBAD and three panels of medical experts (ME) diagnosed participants with normal cognition (NC) or AD using T1-weighted magnetic resonance imaging. The accuracy (87.1% for DBAD and 84.3% for ME), sensitivity (93.3% for DBAD and 80.0% for ME), and specificity (85.5% for DBAD and 85.5% for ME) of both DBAD and ME for diagnosing AD were comparable; however, DBAD showed a higher trend in every analysis than ME diagnosis. DBAD may support the clinical decisions of physicians who are not specialized in AD; this may enhance the accessibility of AD diagnosis and treatment.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Alzheimer’s disease diagnosis and classification using deep learning techniques
    Al Shehri W.
    PeerJ Computer Science, 2022, 8
  • [32] Deep Learning-Based Segmentation in Classification of Alzheimer's Disease
    Buvaneswari, P. R.
    Gayathri, R.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (06) : 5373 - 5383
  • [33] An Interpretable Machine Learning Model with Deep Learning-Based Imaging Biomarkers for Diagnosis of Alzheimer's Disease
    Kang, Wenjie
    Li, Bo
    Papma, Janne M.
    Jiskoot, Lize C.
    De Deyn, Peter Paul
    Biessels, Geert Jan
    Claassen, Jurgen A. H. R.
    Middelkoop, Huub A. M.
    van der Flier, Wiesje M.
    Ramakers, Inez H. G. B.
    Klein, Stefan
    Bron, Esther E.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023 WORKSHOPS, 2023, 14393 : 69 - 78
  • [34] Deep learning of brain magnetic resonance images: A brief review
    Zhao, Xingzhong
    Zhao, Xing-Ming
    METHODS, 2021, 192 : 131 - 140
  • [35] Learning-Based Progression Detection of Alzheimer's Disease Using 3D MRI Images
    Wu, Jacky Chung-Hao
    Chien, Tzu-Chi
    Chang, Chiung-Chih
    Chang, Hsin-, I
    Tsai, Hui-Ju
    Lan, Min-Yu
    Wu, Nien-Chen
    Lu, Henry Horng-Shing
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2025, 2025 (01)
  • [36] MRI Segmentation and Classification of Human Brain Using Deep Learning for Diagnosis of Alzheimer's Disease: A Survey
    Yamanakkanavar, Nagaraj
    Choi, Jae Young
    Lee, Bumshik
    SENSORS, 2020, 20 (11) : 1 - 31
  • [37] Machine learning-based classification of Alzheimer's disease and its at-risk states using personality traits, anxiety, and depression
    Waschkies, Konrad F.
    Soch, Joram
    Darna, Margarita
    Richter, Anni
    Altenstein, Slawek
    Beyle, Aline
    Brosseron, Frederic
    Buchholz, Friederike
    Butryn, Michaela
    Dobisch, Laura
    Ewers, Michael
    Fliessbach, Klaus
    Gabelin, Tatjana
    Glanz, Wenzel
    Goerss, Doreen
    Gref, Daria
    Janowitz, Daniel
    Kilimann, Ingo
    Lohse, Andrea
    Munk, Matthias H.
    Rauchmann, Boris-Stephan
    Rostamzadeh, Ayda
    Roy, Nina
    Spruth, Eike Jakob
    Dechent, Peter
    Heneka, Michael T.
    Hetzer, Stefan
    Ramirez, Alfredo
    Scheffler, Klaus
    Buerger, Katharina
    Laske, Christoph
    Perneczky, Robert
    Peters, Oliver
    Priller, Josef
    Schneider, Anja
    Spottke, Annika
    Teipel, Stefan
    Duezel, Emrah
    Jessen, Frank
    Wiltfang, Jens
    Schott, Bjoern H.
    Kizilirmak, Jasmin M.
    INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, 2023, 38 (10)
  • [38] Predicting the conversion of mild cognitive impairment to Alzheimer's disease based on the volumetric measurements of the selected brain structures in magnetic resonance imaging
    Nesteruk, Marta
    Nesteruk, Tomasz
    Styczynska, Maria
    Barczak, Anna
    Mandecka, Monika
    Walecki, Jerzy
    Barcikowska-Kotowicz, Maria
    NEUROLOGIA I NEUROCHIRURGIA POLSKA, 2015, 49 (06) : 349 - 353
  • [39] Symptomatic Treatment of Memory Decline in Alzheimer's Disease by Deep Brain Stimulation: A Feasibility Study
    Fontaine, Denys
    Deudon, Audrey
    Lemaire, Jean Jacques
    Razzouk, Micheline
    Viau, Philippe
    Darcourt, Jacques
    Robert, Philippe
    JOURNAL OF ALZHEIMERS DISEASE, 2013, 34 (01) : 315 - 323
  • [40] Machine and deep learning approaches for alzheimer disease detection using magnetic resonance images: An updated review
    Menagadevi, M.
    Devaraj, Somasundaram
    Madian, Nirmala
    Thiyagarajan, D.
    MEASUREMENT, 2024, 226