Overall Survival Prediction for Glioblastoma on Pre-treatment MRI Using Robust Radiomics and Priors

被引:5
|
作者
Suter, Yannick [1 ,2 ]
Knecht, Urspeter [2 ,3 ]
Wiest, Roland [4 ]
Reyes, Mauricio [1 ,2 ]
机构
[1] Bern Univ Hosp, Insel Data Sci Ctr, Inselspital, Bern, Switzerland
[2] Univ Bern, ARTORG Ctr Biomed Engn Res, Bern, Switzerland
[3] Spital Emmental, Radiol Dept, Burgdorf, Switzerland
[4] Bern Univ Hosp, Support Ctr Adv Neuroimaging, Inselspital, Bern, Switzerland
关键词
Glioblastoma; Overall survival; Radiomics; Priors; MRI; Normalization; TEMOZOLOMIDE; REGISTRATION; SYSTEM;
D O I
10.1007/978-3-030-72084-1_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Patients with Glioblastoma multiforme (GBM) have a very low overall survival (OS) time, due to the rapid growth an invasiveness of this brain tumor. As a contribution to the overall survival (OS) prediction task within the Brain Tumor Segmentation Challenge (BraTS), we classify the OS of GBM patients into overall survival classes based on information derived from pre-treatment Magnetic Resonance Imaging (MRI). The top-ranked methods from the past years almost exclusively used shape and position features. This is a remarkable contrast to the current advances in GBM radiomics showing a benefit of intensity-based features. This discrepancy may be caused by the inconsistent acquisition parameters in a multi-center setting. In this contribution, we test if normalizing the images based on the healthy tissue intensities enables the robust use of intensity features in this challenge. Based on these normalized images, we test the performance of 176 combinations of feature selection techniques and classifiers. Additionally, we test the incorporation of a sequence and robustness prior to limit the performance drop when models are applied to unseen data. The most robust performance on the training data (accuracy: 0.52 +/- 0.09) was achieved with random forest regression, but this accuracy could not be maintained on the test set.
引用
收藏
页码:307 / 317
页数:11
相关论文
共 50 条
  • [1] Deep and Transfer Learning Approaches for Glioblastoma Patient Survival Prediction from Pre-Treatment MRI
    Alao, Mariana Neves Ramalho Ferreira
    ProQuest Dissertations and Theses Global, 2019,
  • [2] A dual-radiomics model for overall survival prediction in early-stage NSCLC patient using pre-treatment CT images
    Zhang, Rihui
    Zhu, Haiming
    Chen, Minbin
    Sang, Weiwei
    Lu, Ke
    Li, Zhen
    Wang, Chunhao
    Zhang, Lei
    Yin, Fang-Fang
    Yang, Zhenyu
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [3] Prediction of prostate tumour hypoxia using pre-treatment MRI-derived radiomics: preliminary findings
    Zhong, Jim
    Frood, Russell
    McWilliam, Alan
    Davey, Angela
    Shortall, Jane
    Swinton, Martin
    Hulson, Oliver
    West, Catharine M.
    Buckley, David
    Brown, Sarah
    Choudhury, Ananya
    Hoskin, Peter
    Henry, Ann
    Scarsbrook, Andrew
    RADIOLOGIA MEDICA, 2023, 128 (06): : 765 - 774
  • [4] Prediction of prostate tumour hypoxia using pre-treatment MRI-derived radiomics: preliminary findings
    Jim Zhong
    Russell Frood
    Alan McWilliam
    Angela Davey
    Jane Shortall
    Martin Swinton
    Oliver Hulson
    Catharine M. West
    David Buckley
    Sarah Brown
    Ananya Choudhury
    Peter Hoskin
    Ann Henry
    Andrew Scarsbrook
    La radiologia medica, 2023, 128 : 765 - 774
  • [5] A Dual-Radiomics Combined Model for Overall Survival Prediction in Early-Stage NSCLC Patients Using Pre-Treatment CT Images
    Zhang, R.
    Zhu, H.
    Li, Z.
    Sang, W.
    Lu, K.
    Wang, C.
    Zhang, L.
    Yin, F. F.
    Yang, Z.
    MEDICAL PHYSICS, 2024, 51 (09) : 6616 - 6616
  • [6] Multiparametric MRI radiomics model to predict overall survival in Glioblastoma Multiforme
    Kolozsi, E.
    Powell, J.
    Piazzese, C.
    Thomas, S.
    Staffurth, J.
    Spezi, E.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S847 - S848
  • [7] A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
    Ammari, Samy
    Salle de Chou, Raoul
    Balleyguier, Corinne
    Chouzenoux, Emilie
    Touat, Mehdi
    Quillent, Arnaud
    Dumont, Sarah
    Bockel, Sophie
    Garcia, Gabriel C. T. E.
    Elhaik, Mickael
    Francois, Bidault
    Borget, Valentin
    Lassau, Nathalie
    Khettab, Mohamed
    Assi, Tarek
    DIAGNOSTICS, 2021, 11 (11)
  • [8] The association of pre-treatment neutrophil to lymphocyte ratio with overall survival in patients with glioblastoma multiforme
    Bambury, R. M.
    Teo, M. Y.
    Power, D. G.
    Yusuf, A.
    Murray, S.
    Battley, J. E.
    Drake, C.
    O'Dea, P.
    Bermingham, N.
    Keohane, C.
    Grossman, S. A.
    Moylan, E. J.
    O'Reilly, S.
    JOURNAL OF NEURO-ONCOLOGY, 2013, 114 (01) : 149 - 154
  • [9] The association of pre-treatment neutrophil to lymphocyte ratio with overall survival in patients with glioblastoma multiforme
    R. M. Bambury
    M. Y. Teo
    D. G. Power
    A. Yusuf
    S. Murray
    J. E. Battley
    C. Drake
    P. O’Dea
    N. Bermingham
    C. Keohane
    S. A. Grossman
    E. J. Moylan
    S. O’Reilly
    Journal of Neuro-Oncology, 2013, 114 : 149 - 154
  • [10] MULTIMODAL PET/MRI RADIOMICS AND CLINICAL PARAMETERS FOR OVERALL SURVIVAL PREDICTION IN PATIENTS WITH IDH WILDTYPE GLIOBLASTOMA
    Gutsche, Robin
    Bauer, Elena
    Kocher, Martin
    Werner, Jan-Michael
    Fink, Gereon
    Shah, Nadim
    Langen, Karl-Josef
    Galldiks, Norbert
    Lohmann, Philipp
    NEURO-ONCOLOGY, 2022, 24 : 184 - 184