High-Performance Recessed-Channel Germanium Thin-Film Transistors via Excimer Laser Crystallization

被引:10
作者
Liao, Chan-Yu [1 ]
Chen, Shih-Hung [1 ]
Huang, Wen-Hsien [2 ]
Shen, Chang-Hong [2 ]
Shieh, Jia-Min [2 ]
Cheng, Huang-Chung [1 ]
机构
[1] Natl Chiao Tung Univ, Inst Elect, Dept Elect Engn, Hsinchu 30010, Taiwan
[2] Natl Nano Device Labs, Natl Appl Res Labs, Hsinchu 30078, Taiwan
关键词
Germanium (Ge); excimer laser crystallization (ELC); location-controlledgrain boundary (LCGB); thin-film transistor (TFT); SI-TFT; MOBILITY; SOURCE/DRAIN; TECHNOLOGY; GRAIN;
D O I
10.1109/LED.2018.2791506
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter demonstrates the excimer laser crystallization (ELC) of germanium (Ge) thin films with the recessed-channel (RC) structure for high-performance p-channel Ge thin-film transistors (TFTs). Using ELC, large longitudinal grainswith a single perpendicular grain boundary (GB) in the center of the recessed region were formed. This can be attributed to the lateral grain growth from unmelted Ge solid seeds in the thick region toward the complete melting recessed region during ELC. Consequently, the proposed p-channel RC-ELC Ge TFTs possessing large longitudinal grains without the perpendicular GB in the channel region exhibited a superior field-effect holemobility of 447 cm(2)V(-1)s(-1) with minor performance deviation.
引用
收藏
页码:367 / 370
页数:4
相关论文
共 50 条
  • [31] High-Performance Top-Gate Thin-Film Transistor with an Ultra-Thin Channel Layer
    Yen, Te Jui
    Chin, Albert
    Gritsenko, Vladimir
    NANOMATERIALS, 2020, 10 (11) : 1 - 8
  • [32] Channel Thickness Effect on High-Frequency Performance of Poly-Si Thin-Film Transistors
    Chen, Kun-Ming
    Tsai, Tzu-I
    Lin, Ting-Yao
    Lin, Horng-Chih
    Chao, Tien-Sheng
    Huang, Guo-Wei
    Huang, Tiao-Yuan
    IEEE ELECTRON DEVICE LETTERS, 2013, 34 (08) : 1020 - 1022
  • [33] High-Performance Stacked Double-Layer N-Channel Poly-Si Nanosheet Multigate Thin-Film Transistors
    Chen, Lun-Chun
    Lin, Yu-Ru
    Chang, Yu-Shuo
    Wu, Yung-Chun
    IEEE ELECTRON DEVICE LETTERS, 2017, 38 (09) : 1256 - 1258
  • [34] NdxHf(1-x)ON as Gate Dielectric for High-Performance Pentacene Organic Thin-Film Transistors
    Ma, Yuan Xiao
    Wang, Qing He
    Chen, Haining
    Lai, Pui To
    Tang, Wing Man
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2023, 17 (09):
  • [35] High-performance solution-processed organic thin-film transistors based on a soluble DNTT derivative
    Sawamoto, Masanori
    Sugino, Hiroyoshi
    Nakano, Masahiro
    Takimiya, Kazuo
    ORGANIC ELECTRONICS, 2017, 46 : 68 - 76
  • [36] Rational design of oxide heterostructure InGaZnO/TiO2 for high-performance thin-film transistors
    Abliz, Ablat
    Nurmamat, Patigul
    Wan, Da
    APPLIED SURFACE SCIENCE, 2023, 609
  • [37] 2-D Simulator of Laser Crystallization for Polycrystalline-Silicon Thin-Film Transistors
    Matsuki, Kuniaki
    Saito, Ryusuke
    Tsukamoto, Shuji
    Kimura, Mutsumi
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2011, 24 (03) : 472 - 476
  • [38] 3-D Simulator of Laser Crystallization for Polycrystalline-Silicon Thin-Film Transistors
    Matsuki, Kuniaki
    Kimura, Mutsumi
    Ishihara, Ryoichi
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2012, 25 (04) : 650 - 656
  • [39] High-performance InOx/GaOx bilayer channel thin-film transistors made using persistent high-surface-energy induced by photochemical activation
    Lee, Woobin
    Kim, Jiwan
    Kim, Yong-Hoon
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 723 : 627 - 632
  • [40] High-performance low-bandgap conjugated polymers bearing diethynylanthracene units for thin-film transistors
    Lee, Dae Hee
    Shin, Jicheol
    Cho, Min Ju
    Choi, Dong Hoon
    CHEMICAL COMMUNICATIONS, 2013, 49 (37) : 3896 - 3898