Polyacrylonitrile Block Copolymers for the Preparation of a Thin Carbon Coating Around TiO2 Nanorods for Advanced Lithium-Ion Batteries

被引:33
作者
Oschmann, Bernd [1 ,2 ]
Bresser, Dominic [3 ]
Tahir, Muhammad Nawaz [4 ]
Fischer, Karl [5 ]
Tremel, Wolfgang [4 ]
Passerini, Stefano [3 ]
Zentel, Rudolf [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Organ Chem, D-55128 Mainz, Germany
[2] Grad Sch Mat Sci Mainz, D-55128 Mainz, Germany
[3] Univ Munster, Inst Phys Chem, D-48149 Munster, Germany
[4] Johannes Gutenberg Univ Mainz, Inst Inorgan & Analyt Chem, D-55128 Mainz, Germany
[5] Johannes Gutenberg Univ Mainz, Inst Phys Chem, D-55128 Mainz, Germany
关键词
carbon coating; lithium-ion batteries; polyacrylonitrile; RAFT-polymerization; TiO2; nanorods; POLYMER ELECTROLYTES; NANOPARTICLES; PRECURSORS; STORAGE;
D O I
10.1002/marc.201300531
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 degrees C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron microscopy, TEM, analysis). The carbon-coated TiO2 nanorods show improved electrochemical performance in terms of achievable specific capacity and, particularly, long-term cycling stability by reducing the average capacity fading per cycle from 0.252 mAh g(-1) to only 0.075 mAh g(-1).
引用
收藏
页码:1693 / 1700
页数:8
相关论文
共 45 条
[1]  
[Anonymous], J POLYM SCI C
[2]   Controlled RAFT synthesis of polyacrylonitrile-b-poly(acrylic acid) diblocks as precursors of carbon nanocapsules with assistance of gold nanoparticles [J].
Aqil, Abdelhafid ;
Detrembleur, Christophe ;
Gilbert, Bernard ;
Jerome, Robert ;
Jerome, Christine .
CHEMISTRY OF MATERIALS, 2007, 19 (09) :2150-2154
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   POLYMER ELECTROLYTES [J].
ARMAND, MB .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1986, 16 :245-261
[6]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[7]  
Bajaj P, 1997, J MACROMOL SCI R M C, VC37, P97
[8]   Stabilizing nanostructured lithium insertion materials via organic hybridization: A step forward towards high-power batteries [J].
Bresser, Dominic ;
Oschmann, Bernd ;
Tahir, Muhammad Nawaz ;
Tremel, Wolfgang ;
Zentel, Rudolf ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2014, 248 :852-860
[9]   Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes [J].
Bresser, Dominic ;
Paillard, Elie ;
Binetti, Enrico ;
Krueger, Steffen ;
Striccoli, Marinella ;
Winter, Martin ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2012, 206 :301-309
[10]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946