Polyacrylonitrile Block Copolymers for the Preparation of a Thin Carbon Coating Around TiO2 Nanorods for Advanced Lithium-Ion Batteries

被引:33
作者
Oschmann, Bernd [1 ,2 ]
Bresser, Dominic [3 ]
Tahir, Muhammad Nawaz [4 ]
Fischer, Karl [5 ]
Tremel, Wolfgang [4 ]
Passerini, Stefano [3 ]
Zentel, Rudolf [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Organ Chem, D-55128 Mainz, Germany
[2] Grad Sch Mat Sci Mainz, D-55128 Mainz, Germany
[3] Univ Munster, Inst Phys Chem, D-48149 Munster, Germany
[4] Johannes Gutenberg Univ Mainz, Inst Inorgan & Analyt Chem, D-55128 Mainz, Germany
[5] Johannes Gutenberg Univ Mainz, Inst Phys Chem, D-55128 Mainz, Germany
关键词
carbon coating; lithium-ion batteries; polyacrylonitrile; RAFT-polymerization; TiO2; nanorods; POLYMER ELECTROLYTES; NANOPARTICLES; PRECURSORS; STORAGE;
D O I
10.1002/marc.201300531
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 degrees C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron microscopy, TEM, analysis). The carbon-coated TiO2 nanorods show improved electrochemical performance in terms of achievable specific capacity and, particularly, long-term cycling stability by reducing the average capacity fading per cycle from 0.252 mAh g(-1) to only 0.075 mAh g(-1).
引用
收藏
页码:1693 / 1700
页数:8
相关论文
共 45 条
  • [1] [Anonymous], J POLYM SCI C
  • [2] Controlled RAFT synthesis of polyacrylonitrile-b-poly(acrylic acid) diblocks as precursors of carbon nanocapsules with assistance of gold nanoparticles
    Aqil, Abdelhafid
    Detrembleur, Christophe
    Gilbert, Bernard
    Jerome, Robert
    Jerome, Christine
    [J]. CHEMISTRY OF MATERIALS, 2007, 19 (09) : 2150 - 2154
  • [3] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [4] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [5] POLYMER ELECTROLYTES
    ARMAND, MB
    [J]. ANNUAL REVIEW OF MATERIALS SCIENCE, 1986, 16 : 245 - 261
  • [6] Battery separators
    Arora, P
    Zhang, ZM
    [J]. CHEMICAL REVIEWS, 2004, 104 (10) : 4419 - 4462
  • [7] Bajaj P, 1997, J MACROMOL SCI R M C, VC37, P97
  • [8] Stabilizing nanostructured lithium insertion materials via organic hybridization: A step forward towards high-power batteries
    Bresser, Dominic
    Oschmann, Bernd
    Tahir, Muhammad Nawaz
    Tremel, Wolfgang
    Zentel, Rudolf
    Passerini, Stefano
    [J]. JOURNAL OF POWER SOURCES, 2014, 248 : 852 - 860
  • [9] Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes
    Bresser, Dominic
    Paillard, Elie
    Binetti, Enrico
    Krueger, Steffen
    Striccoli, Marinella
    Winter, Martin
    Passerini, Stefano
    [J]. JOURNAL OF POWER SOURCES, 2012, 206 : 301 - 309
  • [10] Nanomaterials for rechargeable lithium batteries
    Bruce, Peter G.
    Scrosati, Bruno
    Tarascon, Jean-Marie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) : 2930 - 2946