Fault Diagnosis and Health Assessment of Landing Gear Hydraulic Retraction System based on Multi-source Information Feature Fusion

被引:2
|
作者
Liu, Kuijian [1 ]
Feng, Yunwen [1 ]
Xue, Xiaofeng [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Dept Aircraft Design Engn, Xian, Shaanxi, Peoples R China
关键词
fault diagnosis; health assessment; landing gear; hydraulic retraction system; multi-source; SDAE; LPP; feature fusion; closed-loop;
D O I
10.1109/SDPC.2017.68
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to solve the problems that a single signal cannot provide sufficient fault information, while the direct using of multi-sensor signals for fusion diagnosis will lead to a heavy calculation which will reduce the diagnostic efficiency, a multi-source information feature fusion method is proposed in this paper. The stacked denoising autoencoders (SDAE) is used to extract the abstract features of time-domain features of multi-source signals, and then locality preserving projection (LPP) is used to dimension reduction to complete the feature fusion. Finally, the fused low-dimensional features act as inputs to the support vector machine (SVM) to realize the failure detection and fault location of typical fault modes of the landing gear hydraulic retraction system. The inhibitory effect of the closed-loop system on the incipient fault is discussed as well. Moreover, a health assessment method is presented considering the gradual degradation of leakage fault of the actuator. The results show that the proposed method is more accurate and reliable than any single signal result. The model of health assessment can give the internal leakage severity of the actuator. The significance of this paper is to provide a feasible idea of the fault diagnosis and health assessment of the landing gear hydraulic retraction system.
引用
收藏
页码:321 / 327
页数:7
相关论文
共 50 条
  • [1] Fault diagnosis of hydraulic retraction system based on multi-source signals feature fusion and health assessment for the actuator
    Liu, Kuijian
    Feng, Yunwen
    Xue, Xiaofeng
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3635 - 3649
  • [2] Fault diagnosis method of hydraulic system based on multi-source information fusion and fractal dimension
    Wei Wang
    Yan Li
    Yuling Song
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43
  • [3] Fault diagnosis method of hydraulic system based on multi-source information fusion and fractal dimension
    Wang, Wei
    Li, Yan
    Song, Yuling
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2021, 43 (12)
  • [4] Hydraulic system fault diagnosis of the chain jacks based on multi-source data fusion
    Liu, Yujia
    Li, Wenhua
    Lin, Shanying
    Zhou, Xingkun
    Ge, Yangyuan
    MEASUREMENT, 2023, 217
  • [5] Fault Diagnosis Method Based on Multi-Source Information Fusion
    Lei, Ming
    Liao, Dapeng
    Zhou, Chunsheng
    Ci, Wenbin
    Zhang, Hui
    INTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROL ENGINEERING (ICECE 2015), 2015, : 315 - 318
  • [6] Grid Fault Diagnosis Based on Information Entropy and Multi-source Information Fusion
    Zeng, Xin
    Xiong, Xingzhong
    Luo, Zhongqiang
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2021, 67 (02) : 143 - 148
  • [7] Fault diagnosis using multi-source information fusion
    Fan, Xianfeng
    Zuo, Ming J.
    2006 9TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2006, : 275 - 280
  • [8] Busbar fault diagnosis method based on multi-source information fusion
    Jiang, Xuebao
    Cao, Haiou
    Zhou, Chenbin
    Ren, Xuchao
    Shen, Jiaoxiao
    Yu, Jiayan
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [9] Rolling Bearing Fault Diagnosis Based on Multi-source Information Fusion
    Zhu, Jing
    Deng, Aidong
    Xing, Lili
    Li, Ou
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2024, 24 (03) : 1470 - 1482
  • [10] Fault Diagnosis of Brake Train based on Multi-Source Information Fusion
    Jin, Yongze
    Xie, Guo
    Hei, Xinhong
    Duan, Haitao
    Chen, Wenbin
    Ma, Jialin
    Zang, Qianbo
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2934 - 2938