Finite-time chaos synchronization of unified chaotic system with uncertain parameters

被引:151
作者
Wang, Hua [1 ]
Han, Zheng-zhi [1 ]
Xie, Qi-yue [1 ]
Zhang, Wei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite-time chaos synchronization; Uncertain parameters; Unified chaotic system; Robust control;
D O I
10.1016/j.cnsns.2008.04.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the finite-time chaos synchronization of the unified chaotic system with uncertain parameters. Based on the finite-time stability theory, a control law is proposed to realize finite-time chaos synchronization for the unified chaotic system with uncertain parameters. The controller is simple, robust and only part parameters are required to be bounded. Simulation results for the Lorenz, Lu and Chen chaotic systems are presented to validate the design and the analysis. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2239 / 2247
页数:9
相关论文
共 19 条
[1]  
Bhat SP, 1997, P AMER CONTR CONF, P2513, DOI 10.1109/ACC.1997.609245
[2]   Adaptive synchronization of neural networks with or without time-varying delay [J].
Cao, JD ;
Lu, JQ .
CHAOS, 2006, 16 (01)
[3]   Controlling and synchronizing chaotic Genesio system via nonlinear feedback control [J].
Chen, MY ;
Han, ZZ .
CHAOS SOLITONS & FRACTALS, 2003, 17 (04) :709-716
[4]   DIGITAL-COMMUNICATION WITH SYNCHRONIZED CHAOTIC LASERS [J].
COLET, P ;
ROY, R .
OPTICS LETTERS, 1994, 19 (24) :2056-2058
[5]  
Feng Y., 2004, 30 ANN C IEEE IND EL
[6]   Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification [J].
Fotsin, HB ;
Daafouz, J .
PHYSICS LETTERS A, 2005, 339 (3-5) :304-315
[7]  
Hong Y., 2000, P 39 IEEE C DEC CONT
[8]  
Khalil H.K., 2002, Control of Nonlinear Systems
[9]   Synchronization of two chaotic nonlinear gyros using active control [J].
Lei, YM ;
Xu, W ;
Zheng, HC .
PHYSICS LETTERS A, 2005, 343 (1-3) :153-158
[10]   Finite time synchronization of chaotic systems [J].
Li, SH ;
Tian, YP .
CHAOS SOLITONS & FRACTALS, 2003, 15 (02) :303-310