Analysis of the Impact of Machine Translation Evaluation Metrics for Semantic Textual Similarity

被引:1
作者
Magnolini, Simone [1 ,2 ]
Ngoc Phuoc An Vo [3 ]
Popescu, Octavian [4 ]
机构
[1] Univ Brescia, Brescia, Italy
[2] FBK, Trento, Italy
[3] Xerox Res Ctr Europe, Meylan, France
[4] IBM TJ Watson Res, Yorktown Hts, NY USA
来源
AI*IA 2016: ADVANCES IN ARTIFICIAL INTELLIGENCE | 2016年 / 10037卷
关键词
Semantic textual similarity; Machine translation evaluation metrics; Paraphrase recognition;
D O I
10.1007/978-3-319-49130-1_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a work to evaluate the hypothesis that automatic evaluation metrics developed forMachine Translation (MT) systems have significant impact on predicting semantic similarity scores in Semantic Textual Similarity (STS) task, in light of their usage for paraphrase identification. We show that different metrics may have different behaviors and significance along the semantic scale [0-5] of the STS task. In addition, we compare several classification algorithms using a combination of different MT metrics to build an STS system; consequently, we show that although this approach obtains remarkable result in paraphrase identification task, it is insufficient to achieve the same result in STS. We show that this problem is due to an excessive adaptation of some algorithms to dataset domain and at the end a way to mitigate or avoid this issue.
引用
收藏
页码:450 / 463
页数:14
相关论文
共 50 条
[41]   Cross level semantic similarity: an evaluation framework for universal measures of similarity [J].
David Jurgens ;
Mohammad Taher Pilehvar ;
Roberto Navigli .
Language Resources and Evaluation, 2016, 50 :5-33
[42]   Cross level semantic similarity: an evaluation framework for universal measures of similarity [J].
Jurgens, David ;
Pilehvar, Mohammad Taher ;
Navigli, Roberto .
LANGUAGE RESOURCES AND EVALUATION, 2016, 50 (01) :5-33
[43]   Semantic Textual Similarity on Brazilian Portuguese: An approach based on language-mixture models [J].
Silva, A. ;
Lozkins, A. ;
Bertoldi, L. R. ;
Rigo, S. ;
Bure, V. M. .
VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2019, 15 (02) :235-244
[44]   SupMPN: Supervised Multiple Positives and Negatives Contrastive Learning Model for Semantic Textual Similarity [J].
Dehghan, Somaiyeh ;
Amasyali, Mehmet Fatih .
APPLIED SCIENCES-BASEL, 2022, 12 (19)
[45]   Fine-grained semantic textual similarity measurement via a feature separation network [J].
Chen, Qiang ;
Zhao, Guoshuai ;
Wu, Yuxia ;
Qian, Xueming .
APPLIED INTELLIGENCE, 2023, 53 (15) :18205-18218
[46]   Evaluating Semantic Textual Similarity in Clinical Sentences Using Deep Learning and Sentence Embeddings [J].
Antunes, Rui ;
Silva, Joao Figueira ;
Matos, Sergio .
PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, :662-669
[47]   Fine-grained semantic textual similarity measurement via a feature separation network [J].
Qiang Chen ;
Guoshuai Zhao ;
Yuxia Wu ;
Xueming Qian .
Applied Intelligence, 2023, 53 :18205-18218
[48]   Extending Monolingual Semantic Textual Similarity Task to Multiple Cross-lingual Settings [J].
Hayashi, Yoshihiko ;
Luo, Wentao .
LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, :1233-1239
[49]   An Adversarial Joint Learning Model for Low-Resource Language Semantic Textual Similarity [J].
Tian, Junfeng ;
Lan, Man ;
Wu, Yuanbin ;
Wang, Jingang ;
Qiu, Long ;
Li, Sheng ;
Jun, Lang ;
Si, Luo .
ADVANCES IN INFORMATION RETRIEVAL (ECIR 2018), 2018, 10772 :89-101
[50]   The 2019 n2c2/OHNLP Track on Clinical Semantic Textual Similarity: Overview [J].
Wang, Yanshan ;
Fu, Sunyang ;
Shen, Feichen ;
Henry, Sam ;
Uzuner, Ozlem ;
Liu, Hongfang .
JMIR MEDICAL INFORMATICS, 2020, 8 (11)